


One of the strong points of physics and engi-
neering in the Soviet Union was the study
of what are sometimes called “nonlinear

oscillations.” A great number of important experi-
mental and theoretical results emerged, of which
only a part became generally known in the West.

Virtually unnoticed in the West, was the discovery
of the phenomenon of quantization of amplitudes
in certain macroscopic oscillating systems. This
phenomenon, and the principle behind it, were
originally discovered in 1968-1969 by Danil
Doubochinski and his brother Yakov, while stu-
dents at Moscow University. Subsequently, a num-
ber of leading laboratories in the Soviet Union car-
ried out extensive theoretical and experimental
investigations of the phenomenon, establishing the
existence of a new class of vibratory processes—
so-called “argumental oscillations”—and of a new
technological principle, having an enormous
scope of potential applications. Most of them
derive from the ability of argumental oscillations,
to efficiently couple together oscillational process-
es at frequencies differing by two or more orders of
magnitude. For a variety of reasons, however, only
a very few applications were brought to full
fruition in the Soviet period; and those that were,
remained in a limited domain that escaped broad
notice in the international community.

In the meantime, Danil Doubochinski, now
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Danil Doubochinski with his pendulum.
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working in Paris, has called attention to the fundamental impor-
tance of his discovery as a kind of bridge between so-called
classical and quantum physics. It provides, in his view, an
answer to a central question which Planck, Einstein,
Schrödinger and others had posed at the beginning of the 20th
Century, but were unable to answer in a satisfactory way: the
question of the physical origin and nature of the apparent dis-
continuities—the so-called “quantum jumps”—in the interac-
tion between atoms of matter and the electromagnetic field.

At the same time, Danil Doubochinski and a group of collab-
orators in France have succeeded in developing several specific
technologies, based on the principle of argumental oscillations,
to the point of ripeness for commercial application. These
include an extremely efficient means for the atomization and
vaporization of liquids by means of “resonant cavitation” and, on
that basis, a revolutionary new technology for industrial refriger-
ation, having enormous potential economic benefits. Other near-
term applications include low-cost production of drinking water
and a highly efficient vibratory process for the preparation of
emulsions. Beyond this, there remains a broad field of potential
applications to such areas as the generation and transmission of
electrical power, electrical motors and propulsion systems of a
new type, radio frequency and microwave technologies, vibra-
tional methods for processing of liquid and solid materials, new
approaches to nuclear fusion, and more.

The author had the occasion to meet several times with
Danil Doubochinski, to discuss his work and to witness some
very beautiful experimental demonstrations of the quantiza-
tion effect. One of them—a pendulum interacting with an
alternating magnetic field—is so simple, that it belongs in
every high school physics classroom.

An initial report on Doubochinski’s work was published in
March 2001 in the French-language magazine Fusion. The
subsequent technological developments, and a growing
appreciation of the pedagogical and scientific value of the
work, justify the publication here of a revised form of the orig-
inal report, including a more adequate discussion of argumen-
tal oscillations and the genesis of the discovery. We plan to fol-
low this soon with a second article, covering some of the
ongoing work on technological applications.

Doubochinski’s Pendulum
The pendulum (Figure 1) consists of a rigid arm on a low-

friction pivot, constrained thereby to move in a horizontal
plane, with a small permanent magnet fixed at its free end. An
electromagnet is installed just under the lowest point of the
pendulum’s motion—the vertical position of the pendulum—
with its axis aligned horizontally in the plane of the pendu-
lum’s motion, in such a way, that at any moment the electro-
magnet exerts an accelerating or decelerating action on the
permanent magnet at the end of the pendulum, depending on
the polarity of the current supplied to the electromagnet and
on the direction of the pendulum’s motion. The axis-length of
the electromagnet is chosen short, relative to the length of the
pendulum, so that the action of the electromagnet on the pen-
dulum becomes significant only over a small portion of the
pendulum’s motion, when the end of the pendulum is located
within a relatively narrow zone of interaction corresponding
approximately to the length of the electromagnet. This spatial

inhomogeneity of the field, acting upon the pendulum, plays a
key role in the genesis of amplitude quantization.

Now we connect the electromagnet with a source of sinu-
soidal alternating current, whose frequency f and voltage can
be varied over a wide range (typically f = 20 to 3,000 Hz, for
a pendulum with a natural period of about 0.5 sec). As soon
as the current is sufficient for a significant interaction between
the electromagnet and the pendulum to occur, we observe the
following characteristic phenomena:

When released at any arbitrary starting position, the pen-
dulum’s motion evolves into one of a discrete set of stable
oscillation modes, having sharply differing amplitudes, but
approximately the same period of oscillation—close to the
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Figure 1
SCHEMATIC OF THE DOUBOCHINSKI PENDULUM
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FIRST FOUR QUANTIZED AMPLITUDES

The four first quantized amplitudes of the Doubochinski
pendulum, with a magnetic field frequency F = 50 Hz.
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pendulum’s undisturbed period (Figure 2). In each such
mode, the energy lost by friction in the pendulum’s motion, is
compensated by net power transfer from the oscillating mag-
netic field, in a self-regulating manner. The system’s “choice”
among the discrete set of stable modes, is determined by the
initial conditions.

Doubochinski’s pendulum has the further remarkable prop-
erty, shared by argumental oscillations in general, that the
“quantized” amplitudes, and the corresponding stable modes
of the pendulum, do not change appreciably, when the strength
of the “external force” (the alternating field, in this case) is var-
ied over a wide range. The amplitudes are highly sensitive,
however, to changes in the frequency of the applied forces. The
higher the applied frequency, the larger the array of stable
modes that become accessible to the pendulum. (See Table 1).

Exactly this sort of behavior—strikingly different from that dis-
played by the linear resonators of classical mechanics—is char-
acteristic of quantum processes in the microscopic domain, as
exemplified by the photoelectric effect and the absorption of
electromagnetic radiation by atoms and molecules.1

The pendulum’s quantized modes are remarkably stable
with respect to vibration and changes in the system’s friction-
al and other parameters; large disturbances can cause the pen-
dulum to “jump” from one mode to another, imitating the
“quantum jumps” of atomic physics.

The effect does not depend on any special details of design
or on the specific materials used in the construction of the
electromagnet and pendulum. The system just described, in
fact, merely exemplifies an entire class of macroscopic oscil-
lating systems exhibiting similar “quantized” behavior. Some
of these are more difficult to realize technically, but are more
natural, from a theoretical physics point of view. One of them
is extremely close to the theoretically idealized case of “ele-
mentary oscillators” interacting with an electromagnetic field,
used by Max Planck in his investigation of the law of black-
body radiation. One suspects that the historical development
of quantum physics would have taken a different course, had
Planck and his contemporaries been familiar with the sort of
phenomena, demonstrated by Doubochinski’s pendulum.

It is remarkable, that despite the considerable academic and
public attention paid in recent decades to so-called “nonlinear
dynamics,” “self-organization,” “chaos theory,” “synergetics,”
“dissipative systems,” and so forth, no one seems to have point-
ed out an example so simple, so elementary, and at the same
time so fundamental, as that discovered by Doubochinski. This
embarrassing circumstance is no doubt due to the fact, that the
bulk of research and publication activity on “nonlinearity,” has
had more to do with mathematicians’ games, than with the
mastery of physical reality. A more profound reason, we con-
sider, is a lack of comprehension of the true, ontological mean-
ing of nonlinearity. A truly nonlinear process is one, that by its
very nature cannot be represented in a consistent and compre-
hensive manner by formal-mathematical methods.

Beyond ‘Classical Mechanics’
At first glance, the processes studied by Doubochinski

would appear to fall entirely inside the domain of classical
(macroscopic) mechanics. Examining Doubochinski’s pendu-
lum, for example, any trained physicist or engineer can easily

write down a rather simple differential equation to describe its
motion, applying the standard Lagrangian method for an
appropriate choice of mathematical function describing the
external force acting on the pendulum as a function of the time
and space coordinates (See box, p. 54). For this reason, some
might dismiss Doubochinski’s work as a mere exercise, having
no fundamental interest.

The situation is rather more subtle than it appears, however.
First, from a purely technical standpoint, our physicist or

engineer will note that the differential equation, describing
Doubochinski’s pendulum according to classical mechanics,
is of a type that cannot be solved, in explicit form, by any of
the presently known methods of mathematical analysis.
Furthermore, the quantized amplitudes, observed in actual
physical experiments, do not manifest themselves in the usual
sorts of computer-based numerical-approximation solutions
(simulations) of the differential equation.2

Second, apart from the mathematical difficulties it intro-
duces, the spatial inhomogeneity of the force-field in
Doubochinski’s pendulum (and systems of a similar type)
means that the external force, experienced by the moving pen-
dulum at any moment, depends not only on the time, but also
on the momentary position of the pendulum itself. This
dependence of the external force on position, which is notably
absent in classical textbook discussions of so-called “forced
oscillations,” permits the pendulum, in a certain sense, to self-
regulate its exchange of energy with the external source. This
condition is key to the quantized behavior, demonstrated by
Doubochinski’s pendulum. He employs the technical term
“argumental oscillations” to describe the general case, in
which the momentary position or configuration of an oscillat-
ing system, enters as a variable into the functional expression
for the external, oscillating force acting upon it. The possibili-
ty of self-regulation of energy-exchange is a general character-
istic of argumental oscillations.

Third: Although Danil Doubochinski and his collaborators
have developed mathematical methods for the analysis of
amplitude quantization and other properties of argumental
oscillations, those who are looking for a mathematical deduc-
tion of the phenomena from the “laws of classical mechanics,”
will be frustrated. Doubochinski’s theoretical-mathematical
analysis lacks the quality of logical completeness, which typi-
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Table 1
THE STABLE QUANTIZED AMPLITUDES OF THE

DOUBOCHINSKI PENDULUM AS A FUNCTION OF
THE FREQUENCY OF THE MAGNETIC FIELD

The experimentally observed stable frequencies do not
depend significantly upon the dimensions of the interac-
tion zone (size of the coil), as long as the width of the zone
remains small relative to the length of the pendulum.

F Pendulum amplitudes
(Hz)___________________________________
5 68°

20 30° 59° 74° 85°

50 30° 43° 53° 59° 68° 74° 80° 85°



fies the treatment of linear oscillators, for example, in text-
books of analytical mechanics. Accordingly, some critics
regard his analysis of amplitude quantization as untrustworthy
and even erroneous.

In fact, if we did not know, by direct experimental demon-
stration, that the phenomenon of amplitude quantification
actually exists, then we would probably not be convinced by
the analytical arguments that Doubochinski et al. have put
forward on this account. But those arguments—which we shall
briefly examine later in this article—were never intended to be
a self-contained, aprioristic mathematical theory. They reflect
on years of experimental investigations of real-life oscillating
systems, and are intended to supplement—but not to
replace!—those experimental results.

Far from claiming to deduce the behavior of his pendulum
from “the laws of classical physics,” Doubochinski sees in this
behavior the manifestation of a new physical principle, which
is not incorporated in classical physics as commonly under-
stood. This point has given rise to considerable confusion, and
necessitates a brief excursion into the issue of methodology,
before we take a closer look at argumental oscillations.

Kepler vs. Lagrangian ‘Virtual Reality’
Over the last 200 years, the influence of Lagrange’s

Mechanique analytique on prevailing modes of scientific edu-
cation, has given rise to the widespread presumption, that so-
called “classical mechanics” constitutes the perfect exemplar
of a completed physical theory. It is presumed, that from the
standpoint of physical principle, nothing fundamentally new
could remain to be discovered in that domain. Danil
Doubochinski disagrees.

Strictly speaking, of course, Planck’s discovery of the quan-
tum of action, and the subsequent elaboration of the so-called
wave mechanics by Schrödinger, already imply a fundamental
correction of classical mechanics. The standard textbook
accounts assure us, however, that this correction, while signif-
icant in the domain of microscopic physical objects, can be
virtually neglected when dealing with systems of macroscopic
bodies. The reason given for this, is the practically infinitesi-
mally small value of Planck’s quantum, compared to the mag-
nitudes of action involved in the motion of macroscopic bod-
ies. The latter would include Doubochinski’s pendulum and
all other macroscopic systems belonging to the traditional
domain of classical mechanics.

Physicists and engineers, who for generations have been
drilled in the mathematical formalisms of Lagrange and
Hamilton, often regard it as self-evident, that a macroscopic
mechanical system is in principle fully equivalent to the cor-
responding set of differential or integral equations derived
according to the Lagrangian or Hamiltonian methods of ana-
lytical mechanics. Many would hasten to add, of course, that
in practice certain idealizations, simplifications, and approxi-
mations are always introduced, in order to make the mathe-
matical equations more manageable. But this practice is pure-
ly pragmatic, and does not contradict the assumed, principled
equivalence between the physical and mathematical systems.

Recent times have seen this view carried to the extreme, as
some people have suggested that physics as a whole is already
practically complete in terms of its foundations. The “funda-

mental forces” being essentially already known, all that
remains is to solve the equations! This view has already found
its expression in the growing tendency, in the teaching of
physics and even in experimental physics itself, to replace
actual experiments by computer-based “virtual experiments.”
The next step might be “virtual laboratories” staffed with “vir-
tual scientists”!

However, the closely related trend toward use of large-scale
computer simulations, to replace the costly and time-consuming
practice of building and testing actual prototype systems, has led
to some rather unpleasant consequences. The dangerous
dynamic instability of Mercedes-Benz’s famous computer-
designed and computer-tested “A-Class” automobile, was
revealed in 1997, when it repeatedly tipped over during inde-
pendent driving tests, conducted after the car had already gone
into production. Similarly, during the late-1990s the United
States suffered a long series of catastrophic failures in the launch-
es of computer-tested rocket systems, plus the total failure of two
NASA Mars missions, which had functioned well in virtual real-
ity simulations. Many more examples could be given.

The disasters caused by overreliance on computer simula-
tions come as no big surprise to old timers in industrial science
and engineering—people who know, from long and some-
times painful experience, the difference between the real-life
behavior of physical systems and the virtual reality of textbook
analytical mechanics.

The problem is not simply one of numerical accuracy, but a
qualitative one: The mathematical methods of physics, while
useful and indispensable in the hands of an experienced
physicist or engineer, are by their very nature incapable of rep-
resenting physical reality per se. The successful practice of
technology always depends on the unique powers of the
human mind, to conceptualize a physical process as a whole
in terms of its underlying principles, and to correct for the
errors that would inevitably flow from any blind use of formal
mathematical and related methods. These are the same cre-
ative powers, which permit original scientists to uncover
anomalies in areas thought to be completely understood by
generally accepted scientific theory, and to discover new
physical principles, not accounted for by existing, formal sci-
entific knowledge.

Exactly this point was at the center of a very relevant strug-
gle over the future of science in France two centuries ago,
between the Republican circles associated with Monge,
Carnot, Ampère, Arago, and Fresnel on the one side, and the
oligarchic forces represented by Laplace, Cauchy, and others
on the other. Unfortunately, Laplace and his backers were
largely successful in their campaign to replace the original
emphasis on physical geometry in the curriculum of the
famous Ecole Polytechnique, by a curriculum centered on
analytical mechanics in its most abstract form, including espe-
cially the Newtonian-Laplacian “celestial mechanics.”

The politically backed imposition of Laplace’s celestial
mechanics as the supposed standard for mathematical physics,
had nothing to do with its scientific merits. On the contrary:
The utter failure of celestial mechanics to account for the most
crucial feature of our solar system—the quantization of the
planetary orbits according to harmonic principles, demon-
strated by Johannes Kepler two centuries before—shows that
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the Newton-Laplace form of mathematical physics is intrinsi-
cally flawed and does not correspond to reality.

Here we meet Danil Doubochinski again. He sees the quan-
tization of orbits in the solar system, as an astronomical man-
ifestation of the same amplitude quantization principle,
demonstrated on the laboratory scale by his pendulum and
related electromechanical devices. Doubochinski himself has
made a preliminary attempt to account for the values of the
planetary orbits on the hypothesis that they represent a form of
argumental oscillations.3

Freeing the Mind from the Slavery of Newtonianism
More significant, for our present purposes, is the pedagogical

value of Doubochinski’s pendulum, not least of all in connec-
tion with a critique of the Newtonian conception of force,
which has sown deep-seated prejudices not only in the minds
of physicists, but within culture as a whole. Danil
Doubochinski himself justifiably blames Newton, and later
Lagrange, for having introduced a fundamental fallacy into
physics, relative to the original, far superior standpoint of
Kepler. This involves at least three, subsumed conceptual flaws:

First, the present-day hegemonic conception of force, going
back to Newton et al., implies the idea of a rigid, “slave-like”
obeisance of a system to an external “applied force,” which
does not really exist, in that way, in Nature.

Second, the idea, that a “force” can act, without itself being
changed or influenced by the system upon which it is acting.
Newton’s third law of action and reaction is not enough to
remedy that flaw, because it assumes a simplistic form of
point-to-point vectorial action, not existing in the real world.

The third, most essential fallacy lies in the attempt to break
up the interactions of physical systems into a sum of suppos-
edly elementary, point-to-point actions.

According to the author’s standpoint—which he has assim-
ilated from the study of Kepler and Leibniz—such “forces” as
the gravitational pull the Earth appears to exert toward a rock,
do not exist as isolated entities in the manner represented by

Newtonian physics. “Forces” are merely effects derived from
the unified, Keplerian physical geometry of the Universe.
When we lift a rock from the Earth’s surface, we are effective-
ly doing work against the organization of the solar system as a
whole, and not merely against a supposed, elementary gravi-
tational force “emitted” by the Earth in isolation.

Similarly, the idea of an external force, while it may serve as
a “useful fiction” (to quote an expression of Leibniz) for the
treatment of certain problems in mechanics, should never be
taken as more than that. An “external force” is a simplistic
approximation, for what in reality is an interaction of physical
systems—an interaction whose existence derives from the cir-
cumstance, that the interacting systems never existed as iso-
lated entities in the first place, but only as subsystems of the
Universe as a whole, as an organic totality.

These remarks, which could be elaborated much more,
should help the reader to avoid falling into a number of con-
fusions, which might otherwise arise from the paradoxical
nature of Doubochinski’s work. On the one hand, he employs
tools of classical mechanics in his analysis of argumental oscil-
lations; on the other hand, his entire approach, and the impli-
cations of amplitude quantization itself, imply a radical depar-
ture from concepts which have become almost self-evident in
the academic teaching and practice of physics.

Historical Background
Danil Doubochinski emphasizes that argumental oscillations

had already found wide application in the design of particle
accelerators and electron tubes, as well as in investigations of so-
called Fermi acceleration of cosmic rays, long before the
Doubochinski brothers’ original work in the late 1960s and 1970s.

Argumental oscillations had already appeared, around
1919, in the pioneering work of Barkhausen and Kurz on the
generation of microwaves. They noted that oscillating elec-
trons, interacting with the high frequency electromagnetic
field in the tubes they had constructed, spontaneously organ-
ized themselves into “bunches,” moving in equal phase with
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Differential Equation for the Argumental Pendulum
The standard differential equation for a simple circular

pendulum is
(1) ml �̈ = – mg sin�

where � is the angular displacement of the pendulum from
the vertical position and l is the length of the pendulum.
The term – mg sin� represents the component of the force
of gravity in the direction of the pendulum’s motion. The
equation is usually written:

�̈ + �0
2 sin� = 0, where �0 = (g /l )1/2

For small oscillations, sin� � �, and the solutions of the
corresponding equation �̈ + �0

2sin�= 0, are simple sinu-
soidal oscillations �= a sin(�0t + b), of frequency f0 = �0 /2π
(called the proper frequency of the pendulum). 

Equation (1) does not take into account the effect of fric-
tional dissipation of energy; to do so, we must introduce a
term –��̇ on the right side of equation (1), where � is a

coefficient expressing the effect of friction. This leads to the
equation

(2) �̈ + ��̇ + �0
2sin� = 0

In the case of Doubochinski’s pendulum, we have in
addition an oscillating external force which acts only when
the pendulum is inside the “interaction zone.” The force
can be expressed as A	(�)sin(vt), where 	(�) = 1 for |�
 �
�0, 	(�) = 0 for |�
 � �0. F = v/2π is the frequency of the
external field; A is its amplitude.

This leads to the full equation for Doubochinski’s pendulum:
�̈ + ��̇ + �0

2sin� = A	(�)sin(vt)
In the case of small oscillations, when the pendulum

remains inside the interaction zone, the equation reduces to:
�̈ + ��̇ + �0� = A sin (vt)
which is the classical equation for forced oscillations of

a damped harmonic oscillator. (See box, p. 55.)



respect to the field. This “bunching effect” is
crucial to the efficient transfer of energy from
the electrons to the field, and has been widely
exploited in the technology of high-power
microwave generation until now, as well as in
high-energy particle accelerators.4

The self-organization of an originally continu-
ous stream of electrons into discrete “packets” is
a reflection, on the microscopic scale, of essen-
tially the same principle that causes the quanti-
zation of amplitudes in Doubochinski’s pendu-
lum. But until the work of Doubochinski and his
collaborators, no one had demonstrated the cor-
responding phenomena of argumental oscilla-
tions in macroscopic systems on the laboratory
scale, nor called attention to the universal nature
and potentially revolutionary technological
implications of these phenomena.5

The experimental realization and detailed
investigation of argumental oscillations in
macroscopic electromechanical systems, was
originally carried out by Danil and Jakov
Doubochinski and J.D. Penner at the Physics
Department of the Vladimir Pedagogical
Institute in the early 1970s. These investigations
were continued at the renowned Lebedev
Institute in Moscow, and at other locations in the Soviet
Union. In addition to the Doubochinski pendulum, which we
shall now examine in some detail, various other devices were
constructed on the principle of argumental oscillations,
including new types of electric motors having a discrete mul-
tiplicity of rotor speeds for one and the same frequency of the
supplied current.

At the same time, it was realized that the phenomenon of
amplitude quantification, although existing in reality, could
not be demonstrated in standard large-scale computer simula-
tions of the differential equations of motion. Specialized pro-
grams had to be developed a posteriori, to make certain
aspects of argumental oscillations accessible to study with the
aid of computers. Doubochinski has also developed mathe-
matical methods for calculating the approximate values of the
quantized amplitudes.

We now take a closer look at the pendulum, which provides
the simplest and most striking experimental demonstration of
amplitude quantization in argumental oscillations.

The Two Regimes of the Doubochinski Pendulum
To get a first insight, into why the behavior of Doubochinski’s

pendulum differs so radically from that expected from textbook
physics, it is useful to contrast two regimes of operation of the
pendulum, presenting two very different physical-geometrical
characteristics: First, the case of small amplitudes, where the
pendulum remains entirely within the interaction zone of the
electromagnet; and second, the case of larger amplitudes, in
which the pendulum moves beyond the interaction zone.

The first case corresponds very nearly to the textbook case
of “forced oscillations of a linear oscillator under a periodic
external force” (See box, this page). Imagine that we release
the pendulum from a position well within the interaction

zone, not far from the vertical. The magnetic field being
approximately uniform in that zone, the accelerating or decel-
erating action of the electromagnet is essentially independent
of the pendulum’s position. For small amplitudes, the pendu-
lum behaves very much like an ideal linear oscillator, reacting
to the “external force” of the electromagnet.

The standard textbook analysis tell us, that when the fre-
quency of the current supplied to the electromagnet is large
compared to the frequency of oscillation of the pendulum, the
net effect of the alternating field on the pendulum’s motion
will be small, and the evolution of the pendulum’s amplitude
will not change significantly from what would happen, if the
electromagnet were not present at all. This, in fact, is the
behavior we actually observe. Evidently, the effects of rapidly
alternating acceleration and deceleration tend to cancel out
over any given period of the pendulum.

The behavior of the pendulum in this regime of small oscil-
lations, conforms broadly to the standard textbook accounts. A
significant transfer of energy from the alternating field to the
pendulum’s motion occurs only when the frequency of the
electromagnet’s field comes close to the natural frequency of
the pendulum itself. This is the classical case of resonant oscil-
lations. Notably, the amplitude of the pendulum increases with
the amplitude of the external force—in this case, as a function
of the voltage of the alternating current supplied to the electro-
magnet—and can take on an apparently continuous range of
values. There is no quantization on the macroscopic scale.

Doubochinski remarks, that in this classical form of reso-
nance, the oscillator appears to be rigidly “enslaved” to the
external force.

The behavior of the pendulum becomes much more inter-
esting, however, as soon as the pendulum has sufficient ener-
gy to move beyond the narrow zone of interaction. Leaving

21st CENTURY Winter 2005-2006 55

TYPICAL RESONANCE CURVE FOR FORCED OSCILLATIONS
OF A DAMPED OSCILLATOR

A strong resonance interaction is produced with an external force
of frequency F only when F is near f0, the natural frequency of the
oscillator.
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that zone, the action of the electromagnet on the pendulum
drops off very rapidly toward zero, so the motion of the pen-
dulum in the area outside the interaction zone is practically an
undisturbed, free motion.

Thus, for large motions of the pendulum, we must distin-
guish among three different zones traversed by the pendulum
(Figure 3): (1) the interaction zone and its immediate neigh-
borhood, in which the alternating magnetic field exerts a sig-
nificant influence on the pendulum; (2) the outer zone to the
left of the electromagnet; and (3) the outer zone to the right of
the electromagnet. In the latter two zones, the interaction
between the magnetic field and the pendulum can be taken to
be practically zero. The existence of these three zones
implies—for the case of large motions—that the external force,
acting upon the pendulum, is no longer independent of the
pendulum’s position, but depends on which of the zones the
pendulum is located in at a given moment.

This circumstance fundamentally transforms the variety and
character of the modes of exchange of energy between the
pendulum and the alternating magnetic field. Most important,
the process of “cancelling out” of alternating accelerations
and decelerations of the pendulum by the alternating field in
the interaction zone, is interrupted at the moment that the pen-
dulum leaves the zone. If the alternating field completes a
whole number of cycles during the time the pendulum trav-
erses the zone, then the effects of positive and negative half-
cycles will still cancel out; but if the number of cycles is not a
whole number, then cancellation may not occur, and there
can be a net transfer of energy between the pendulum and the
field, during the former’s passage through the interaction zone.

It is not hard to see, that the sign and absolute magnitude of
the energy exchange, depend on the phases of the alternating
field at the moment the pendulum enters and exits the inter-
action zone, relative to the direction of the pendulum’s
motion. For example, if the pendulum enters the interaction
zone when the magnetic field is beginning a cycle, but leaves
the zone in the middle of a succeeding cycle—that is, after an

odd number of half-cycles—then there will be a non-zero, net
transfer of energy (Figure 4). Assume the direction of motion of
the pendulum, relative to the polarity of the field, is such that
the initial half-cycle of the field has an accelerating effect. In
this case, since the total number of decelerating half-cycles
will be one less than the number of accelerating half-cycles,
after cancellation of pairs of oppositely acting half-cycles, the
net effect will be equivalent to that of the first half cycle.6 In
this case, the pendulum will gain energy. If the pendulum
enters the field at the same phase of the current, but in the
opposite direction of motion, the net effect will be a decelera-
tion and a loss of energy.

Now, note that the exact relationship between entry and exit
times depends not only on the entry velocity and direction, but
also to a significant extent on the phase of entry. This is
because the total “time of flight” through the interaction zone
is modified by the changes in velocity caused by the alternat-
ing field. As a result, the amount of energy gain or loss during
a single passage through the zone, is a complicated function
of the entry velocity and entry phase.

Careful investigation shows that for a given entry velocity
there always exist phases of entry, for which the pendulum
enjoys a net increase in energy, as well as phases for which a
net decrease occurs. The possibility of a net energy gain
means that the pendulum—provided it can somehow
“choose” the right phases of entry into the interaction zone—
might be able to draw exactly as much power from the alter-
nating field as it needs to overcome its frictional losses, and
thereby maintain itself in a stable regime of motion.

The overall behavior of the pendulum will depend, however,
on the cumulative effect of many successive passages through
the interaction zone. The phases of entry into the zone can
change from one entry to the next. Any attempt to foresee what
will happen, from an a priori, mechanistic standpoint, leads us
into a seemingly endless labyrinth of complexities, typical for
what engineers and physicists broadly term “nonlinear prob-
lems.” Given the lack of adequate, general theoretical principles
for handling such problems, industrial engineering practice is
obliged to resort, in each specific case, to an ad hoc combina-
tion of mathematical studies, computer simulations, and exper-
iments, often expending large resources for this purpose.

Also in this case, the only reliable approach, at the outset, is

56 Winter 2005-2006 21st CENTURY

Figure 4
SINUSOIDAL FUNCTION OF THE MAGNETIC FIELD
Shown is the sinusoidal function of the magnetic field
and included surface between the limits defined by the
times of entry and exit from the interaction zone.
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to actually build the pendulum and see what it does! A com-
bination of hypothesis, experiment, and theoretical analysis
allowed Doubochinski and his collaborators to identify certain
crucial features of the process, connected with the emergence
of a discrete, “quantized” array of stable amplitudes in the
pendulum. These, in fact, apply to a much broader class of
oscillating systems, subsumed under a common principle of
“argumental interaction.”

At the risk of taxing the reader’s attention somewhat, we
propose in the following paragraphs to go into the mentioned,
crucial features of argumental oscillations in some depth. Full
details of experiments and mathematical analyses are avail-
able in a large number of scientific publications from the
Soviet period, most of which, however, are available only in
the Russian-language original.

Velocity Modulation
The first observation we take up here, played a key role in

the genesis of the Doubochinski brothers’ original discovery.
If we assume, at the outset, that the period of the pendulum

(at a given amplitude) is incommensurable with the period of
the alternating current supplied to the electromagnet, then we
should expect the phases of the field, at the moment the pen-
dulum enters the interaction zone, to be randomly—that is
uniformly—distributed among all possible values between 0
and 360 degrees. One might conclude, in that case, that the
net result of the interaction, over many periods of the pendu-
lum, would be essentially zero. Indeed, for each given phase
of entry, the opposite polarity of the field (relative to the pen-
dulum’s direction of motion) would occur equally often, and,
since the forces exerted on the pendulum, as a function of
time, are exactly opposite for the opposite relative polarities,
their effects would cancel out, on the average.

This reasoning, however, overlooks the possible effect,
already mentioned above, of changes in the pendulum’s net
velocity, and thereby also in the time during which the pen-
dulum remains in the interaction zone, as a result of the inter-
action with the electromagnet. As it turns out, that effect intro-
duces a surprising asymmetry into the process, leading to a sit-
uation, in which the pendulum can draw a net positive power
input from the electromagnet, even without a tight correlation
of phase having been established.

The principle involved is illustrated by Figure 5. Here the
sinusoidal curve represents the accelerating or decelerating
force of the field generated by the electromagnet, relative to
the motion of the pendulum; and the vertical line at left and
the arrows at right plot the moments of entry and exit of the
pendulum from the “interaction zone.” Evidently, the net
change of velocity of the pendulum, between entering and
exiting the zone, will be equal to the integral of the accelerat-
ing/decelerating force acting on it in that zone; that is, the total
area bounded by the curve between the entry and exit times,
with the portions under the x-axis counted negatively.

Designate the width of the interaction zone by d, the veloc-
ity of the pendulum at the point it enters the interaction zone
by v0, and the period of oscillation of the current supplying the
electromagnet by T. Thus, if the field were turned off, the pen-
dulum would traverse the zone in a time t0 equal to d/v0.
Assume that the field of the electromagnet is not too strong, so

that the change in velocity of the pendulum, as a result of a
single passage through the field of the electromagnetic inter-
action zone, is only a small fraction of its velocity v0. This is
the normal operating situation of Doubochinski’s pendulum.

Now, consider different possible relationships between the
“transit time” t and the period of the electromagnet. Evidently,
if t is exactly equal to a whole period T of the electromagnet,
then the effect of the positive and negative phases of the field
would cancel out, and the pendulum would exit the interac-
tion zone with the same velocity v0, as when it entered.

For a larger velocity v0 (larger amplitude), we will have t  T.
Assume, for the sake of illustration, that t0 = 3/4T. This is the sit-
uation presented in Figure 5. In the first diagram (a) we consid-
er the case, where the pendulum enters the interaction zone at
the very beginning of an accelerating phase of the electromag-
net. Because the pendulum experiences a whole accelerating
phase, but only part of a decelerating phase, the net effect will
obviously be an acceleration of the pendulum. Compare this
with the effect of the opposite phase (b), where the pendulum
experiences a net deceleration. Now, if the time of interaction
were the same in both cases, then the two effects would be
equal and opposite. Observe, however, that in the first case (a),
because of the net acceleration of the pendulum’s velocity, the
“transit time” t of the pendulum will no longer be equal to t0,
but will be slightly shorter, with a decelerating effect.

Similarly, in the second case, the net deceleration of the
pendulum will cause it to stay in the interaction zone slightly
longer than t0. The result of this, as the reader can easily see,
is that the areas under the two curves, from the moment of
entry to the moment of exit from the zone, are no longer equal
and opposite: The net accelerating effect (that is, net increase
in the kinetic energy of the pendulum) in case (a) will be larg-
er than the net decelerating effect in case (b). Taken together,
the two would result in a net gain in energy by the pendulum.

What happens when the pendulum enters the interaction
zone at a different phase of the alternating current than at the
beginning of a cycle? A thorough analysis of all possible
cases—which for brevity we omit here—shows that although
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Figure 5
THE EFFECT OF
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MODULATION 
FOR OPPOSITE
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Shown are the ef-
fects of velocity
modulation for one
pair of opposite
phases. The arrows
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dulum from the
zone of interac-
tion.

0

0

T

T

t0

t

t



some phases yield a net acceleration, and others a net decel-
eration, the effect of velocity modulation is to produce an
overall net gain in energy of the pendulum, when averaged
over many randomly distributed phases.

An early paper, published in Soviet Physics Uspekhi in
1973, summarized the situation as follows:

The assumption that oscillations maintained by a har-
monic force always assume the frequency of this force
or a multiple of this frequency is widely used in the the-
ory and practice of mechanical oscillations. However,
inertial, thermal, and other effects, frequently not taken
into account, introduce time shifts between the driving
force and the dynamic functions of the oscillations, and
can lead to an asynchronous excitation of undamped
oscillations. . . . When the frequency of the oscillating
system is not commensurate with that of the alternating
external force, a resultant positive energy contribution
(averaged over a number of oscillations) is possible if the
system alters the time of flight through the interaction
zone sufficiently strongly.

In particular, these results imply the possibility for the oscil-
lating system (the pendulum in our case), of drawing power
from a much higher-frequency alternating field, to compensate
its frictional losses, and even increase its amplitude in the

course of many oscillations.
Estimates of the net average energy transfer to the system,

showed that it can take alternately negative as well as positive
values, depending on the relationship between the nominal
transit time t0 and the period of the alternating field T.

If, for example, t0 is equal to 1 ⁄4T, rather than 3⁄4T, then one
can easily convince oneself that the average effect will be net
loss of energy by the pendulum, rather than a net gain. Since
complete cycles of the field have no net effect on the velocity
of the pendulum, the values t0 = 1⁄4T + T, 1⁄4T + 2T, 1⁄4T + 3T,
and so on, and t0 = 3⁄4T + T, 3⁄4T + 2T, 3⁄4T + 3T, and so on,
will yield the same sign of effect—that is, a net overall decel-
eration or net overall acceleration—as t0 = 1⁄4T and t0 = 3⁄4T
respectively.

This difference in behavior, depending on the nominal tran-
sit time of the pendulum through the interaction zone—that is,
on the velocity v0, which in turn is a function of the pendulum’s
amplitude—already points to a potential mechanism for the
selection or quantization of amplitudes: Amplitudes for which
losses dominate, will be damped out, whereas those that can
draw net energy from the source, can sustain themselves.

Phase Synchronization
However, detailed experimental studies of the

Doubochinski pendulum, revealed a second, crucial phenom-
enon involved in the emergence of precisely determined, dis-
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How to Build a Doubochinski Pendulum

The construction is very simple (see Figure 1). The oscil-
lating mass consists of a short permanent magnet, with

one of its poles pointing downward, attached to the end of
a wooden rod (or other rigid arm) 30 to 60 cm in length.
When crossing the position of equilibrium, the pendulum
crosses over a flat-shaped electromagnet (solenoid) 9 to 12
mm in width, whose axis is parallel to the pendulum’s
motion. The solenoid is supplied with alternating current
from the household net, through a resistive load or from a
transformer.

The windings of the solenoid should run perpendicular
to the pendulum’s plane of oscillation. The solenoid itself is
mounted symmetrically, relative to the equilibrium (the
lowest) position of the pendulum.

For the best results, observe the following details in the
construction of the argumental pendulum:

The form of the permanent magnet at the end of the pen-
dulum should be square or rectangular (a flat shape is best).
One can also use a magnet of irregular form, for example a
fragment of dimensions approximately 8 � 10 � 10 mm,
broken off from the ferrite magnet of a loudspeaker).

As stated above, the magnet should be mounted on the
end of the pendulum arm in such a way, that one of its
poles points vertically downward toward the solenoid
when crossing over it. In fact, the effect can also be
obtained with a horizontally positioned magnet; however,
in this case, the values of the discrete amplitudes will be

somewhat different from those corresponding to the verti-
cal orientation. The permanent magnet can be directly
glued to the rod or fastened to it with the help of strong
adhesive tape. A suitable pendulum arm, with a cross-sec-
tion of 3 � 5 mm, can be fashioned from the material of a
wooden ruler.

The suspension of the pendulum must have low friction.
This requirement can be fulfilled quite well by using suspen-
sion mechanisms taken from discarded electrical measure-
ment devices, of the sort that have moving pointers, such as
voltmeters, multimeters, and so on. Generally, any suspen-
sion can be used that permits motion in a fixed plane with
very little damping of the oscillations. Fix the pendulum arm
to the suspension using a thin brass or aluminum fastener.

The solenoid can be a rectangular coil of dimensions 10 �
30 � 100 mm, wound with insulated wire of diameter 0.15
mm. The number of windings in the coil should be about
800. The optimal voltage for routine operation of the pen-
dulum, is around 70 V. However, in order to test the effect
of differing field strengths on the behavior of the pendulum,
one can introduce a rheostat into the power supply, allow-
ing the voltage to be varied continuously from 10 to 200 V.
In the higher voltage range, it may be necessary to keep the
time of operation short, to avoid overheating of the coil.

This is based on an article by D.I. Penner, M.I. Korsakov,
Danil Doubochinski, and Yakov Doubochinski, published
in the Soviet journal Physics in School, 1981.



crete amplitudes and the remarkable stability of
the quantized modes: After the release of the
pendulum from a given position, the phases of
entry into the interaction zone soon cease to be
distributed in a random manner. The pendulum
adjusts its motion in such a way, that its entry
into the zone becomes very nearly synchronized
with a specific phase of the alternating field. This
“auto-synchronization” of the pendulum is anal-
ogous to the effect of “phase bunching” of elec-
trons or other charged particles in a high-fre-
quency electromagnetic field, as mentioned ear-
lier. Careful analysis shows that the auto-syn-
chronization tendency of the pendulum is itself
closely connected with the mechanism of veloc-
ity modulation, which we just examined. Let us
now see, how that synchronization tendency in
turn leads to a discrete series of amplitudes for
the pendulum.

Observe, first, that the pendulum passes
through the interaction zone twice for each full
period—once in each direction. Between any
two successive passages, the pendulum swings
freely in the outside area, up to a certain maxi-
mum height, and then swings back to enter the
interaction zone in the opposite direction. That
process takes a certain time, between the
moment the pendulum exits the interaction zone and the
moment it reenters that zone. Consequently, the phase of the
alternating field at the moment of each new entry into the
interaction zone, depends on the phase at the moment of the
preceding exit from that zone, and the time between those two
moments.

Next, take account of the important fact, that the elapsed
time between successive exit and reentry into the interaction
zone—and thus the relationship between the phases of succes-
sive entries into that zone—depends on the amplitude of the
pendulum’s motion. For larger amplitudes, the pendulum takes
slightly longer to arrive from its maximum height to the inter-
action zone near the bottom of its swing. This fact is related to
a property of a circular pendulum, which should be known to
any student of classical physics and is commonly referred to as
anisochronicity: The period of oscillation is not fixed, but
depends on the amplitude of the pendulum’s motion.7

The dependence of periodic time on the amplitude, opens
up a new possibility for our system, which is entirely absent in
the classical linear systems: namely, to use its variable ampli-
tude as a means for regulating its phase relationships with
respect to the alternating field.

It is also important to note, by the way, that even a nom-
inally linear oscillator, when subjected to the velocity-
modulating influence of a spatially inhomogeneous alternating
field, can take on anisochronic characteristics that permit it,
too, to regulate its phase relationships in similar manner to the
Doubochinski pendulum.

Returning to the pendulum, let us suppose, to be concrete,
that the alternating field has a frequency F = 50 Hz, and the
pendulum’s characteristic frequency (the frequency for very
small amplitudes) is 0.5 Hz (a period of 2 seconds).

Figure 6 illustrates the dependency of the pendulum’s
momentary frequency on its amplitude, for a typical choice of
physical parameters of the pendulum. Note, that for certain
values of the amplitude, the frequency of the alternating field
(50 Hz) will be an integral multiple of the frequency of the
pendulum—that is, when the alternating field performs a
whole number of oscillations during a single period of the
pendulum. As a result, the phases of the alternating field, at
which the pendulum enters and exits the interaction zone, will
be repeated from one cycle of the pendulum’s motion to the
next, opening up the possibility of a stable, “stationary”
regime.

The first case of this arises for “infinitesimally small” pendu-
lum motions, whose frequency is f = 0.5 Hz. The ratio of fre-
quencies is F/f = 50/0.5 = 100. In this case, however, the pen-
dulum remains inside the interaction zone and behaves essen-
tially as predicted by the classical theory of resonance: The
frequency of the “external force” being many times larger than
the characteristic frequency of the pendulum, there is practi-
cally no effect on pendulum’s average motion, and there is no
quantization of the amplitude.

For larger amplitudes, the period of oscillation of the pen-
dulum will be slightly longer, and its frequency lower, leading
to a larger value for the ratio F/f. The next whole-number
value, larger than the value 100, would be F/f = 101, which
would occur for a pendulum frequency of f = 50/101 Hz =
approximately 0.495 Hz. Looking at Figure 6, we see that this
corresponds to an amplitude, in terms of maximum angle of
deflection from the vertical, of about 23 degrees.

In this case, the pendulum’s motion goes beyond the bounds
of the interaction zone; for each full period, it passes twice
through—once in each direction. The time between the
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Figure 6
RELATIONSHIP OF AMPLITUDE TO FREQUENCY

The relationship of amplitude to frequency in a circular pendulum is
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moment of entry in one direction, and the next moment of entry
in the opposite direction, corresponds to a half-period of the
pendulum, which in turn corresponds to 101/2 = 50.5 oscilla-
tions of the alternating field (Figure 7). Thus, in the time between
two successive passes through the interaction zone, the alter-
nating field makes exactly a whole number of cycles plus a half-
cycle. This means that the pendulum, when reentering the
interaction zone after a given passage, will encounter the alter-
nating field in a phase which is shifted by 180 degrees—that is,
the opposite phase—relative to that of the previous passage.
Since it is also moving in the opposite direction, the effect on the
pendulum will be to accelerate (or decelerate) it by exactly the

same amount as in the previous passage. In other words, the
gain (or loss) in energy of the pendulum will be the same for
both of the two successive passes through the interaction zone.

Now, as we noted earlier, there will always exist phases of
entry into the zone, for which the pendulum receives a net sur-
plus (or net loss) of energy. If the friction in the pendulum is
not too large, then a phase will exist for which the gain in a
single passage through the interaction zone, exactly balances
the frictional loss in a half-cycle of the pendulum. If we release
the pendulum at the right amplitude (the approximately 23
degrees we determined above) and at the right moment (so it
enters the interaction zone at the appropriate phase), then it
will reenter the zone after a half-period in the opposite direc-
tion and in exactly the opposite phase, pick up the exact same
energy gain, and reenter the zone once again in the correct
phase after another half-cycle. We will thus have a so-called
“stationary regime” in which the pendulum maintains a con-
stant amplitude, drawing just as much power as it needs to
overcome its frictional losses.

Several remarks are important to make at this point.
First, our discussion actually points to the potential existence

not only of one, but of a discrete series of stationary regimes.
The essential parameter is the ratio of frequency of the alter-
nating field to the frequency of the pendulum. In our discussion
above, we saw that a stationary regime is possible for F/f = 101.
It is easy to see, however, that the same argument applies
whenever the ratio F/f is equal to an odd whole number, that is,
103, 105, 107, and so on. For our chosen case of F = 50 Hz,
these values correspond to f = 50/103 Hz = 0.485 Hz; f =
50/105 Hz = 0.476 Hz, f = 50/107 Hz = 0.467 Hz, and so on.
Looking at Figure 6, we can read off the values of the pendu-
lum’s amplitude, which correspond to these frequencies.

Second, we did not take account, above, of the slight
changes in the momentary relationship between amplitude
and frequency of the pendulum, caused by the interaction
with the electromagnet over a single half-cycle.

For these and other reasons, although our analysis strongly
suggests the existence of “stationary regimes,” it by no means
proves that they can actually be realized in practice. For
example, how does the pendulum “find” the suitable phases
and amplitudes? In experiments, the pendulum actually
demonstrates its ability to do this, but a truly comprehensive
theoretical explanation has not been given.

Self-Regulation
In fact, the theoretical amplitudes, calculated above, do dis-

play a rough correspondence to the “quantized amplitudes”
actually observed in experimental realizations of
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Figure 7
PHASE RELATIONS

Shown in (a) are half-cycle movements of the pendulum
during two successive journeys through the interaction
zone. The pendulum enters the zone at �, traverses the
zone, reaches a maximum height at �, and enters the
interaction zone in the inverse direction �. During the
next half-cycle, the pendulum goes from � to �, and
from � to �.

The oscillations of the sinusoidal function of the mag-
netic field during the two successive entries of the pen-
dulum into the interaction zone are shown in (b), where
one sees that the second entry is made with reverse
phase (displaced by 90° in relation to the first entry).
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OBSERVED AND CALCULATED AMPLITUDES

Ratio F/f 101 103 105 107 109 111________________________________
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Doubochinski’s pendulum. The discrepancies, caused mainly
by the effects of friction and the changes in velocity inside the
zone of interaction, are largest for the smallest amplitude
observed (typically 30 degrees, as opposed to the calculated
23 degrees).

On the other hand, the actual quantized motions realized in
Doubochinski’s pendulum do not correspond exactly to the
ideal stationary motions described above, but are much more
complicated. They agree only in average with the idealized
motions. What occurs, in first approximation, is that the actu-
al phases of entry into the interaction zone “wander” around
the values corresponding to “pure” stationary motions.

These experimentally observed phenomena are best
described in terms of the so-called “phase-space diagram”
(Figure 8). When the system is disturbed, its phase-space trajec-
tory begins to “orbit” around the motion corresponding to the
stationary regime. If the disturbance is not too large, this “orbit”
is gradually dampened out, and the system’s phase-space tra-
jectory is a spiral, converging toward a small “wandering”
motion in the vicinity of the stationary regime. A major distur-
bance, however, can throw the pendulum into a completely dif-
ferent phase-space region. In some cases, the pendulum exe-
cutes a “quantum jump” to a different quantized amplitude.

In fact, depending upon the initial conditions, even much
more complex behavior is possible—for example a motion,
which spontaneously jumps back and forth between quantized
amplitudes, imitating the behavior of some atomic systems in
quantum physics. Nevertheless, the stable, “quantized” ampli-
tudes prevail as the “favorite” modes of Doubochinski’s pen-
dulum, and are by far the easiest to demonstrate.

Stability Properties
All of this would be little more than a scientific curiosity, of

little practical import, were it not for the fact that the quantized
regimes of the Doubochinski pendulum and other, suitably
constructed argumental oscillators, display an extraordinary
stability relative to both large variations in the strength of the
driving force (that is, the current in the electromagnet), and to
external perturbations of various kinds. Both these characteris-
tics are crucial to the technological applications of argumen-
tal oscillations.

In experiments carried out by the Doubochinskis and their
collaborators on the argumental pendulum, the voltage sup-
plied to the electromagnet was varied over a wide range, start-
ing with the lower limit at which the stable quantized oscilla-
tions appeared, up to a value nearly 20 times higher. The fre-
quencies of the quantized regimes remained strictly constant,
and amplitudes varied by less than 1 percent.

Precise observations revealed the mechanism of this
remarkable adaptability, which holds true for argumental
oscillations in general: It is by shifting the phase of entry into
the interaction zone, while keeping the frequency and ampli-
tude relatively constant, that the pendulum is able to maintain
its “regime,” compensating for changes in the strength of the
source by modifying its interaction with the electromagnet.
The same apparent “phase intelligence” of the pendulum, per-
mits it to defend its quantized regimes—within certain limits,
of course—against external disturbances of various kinds.

A general characteristic of argumental interactions between

a high-frequency “source” and a low-frequency oscillator, is
that the oscillator adapts to the “source” mainly by variations
of phase, while its overall period of oscillation remains close
to that corresponding to its own “proper frequency.”

In this context, as demonstrated in countless experiments
with a wide variety of mechanical, electromechanical, and
electronic devices, the span of frequencies that can be effi-
ciently coupled to each other in this way, can be enormous: For
example, Doubochinski’s pendulum, whose “natural” frequen-
cy is in the range of 0.5 Hz, can maintain itself in stable oscil-
lations at nearly the same frequency, by drawing energy from a
source (the electromagnet) operating at 1,000 Hz or more.
With other devices, the frequency ratio can be even very much
larger. As noted above, the spectrum of stable regimes is a func-
tion of the frequency applied to the system, and becomes rich-
er and denser, the greater the ratio between the external fre-
quency and the “natural” frequency of the oscillator.

These features open up the possibility of “feeding” a large
number of oscillating systems, each at its own frequency, dif-
ferent from the others, by a single high-frequency source.

Finally, we should note, that the theoretical analysis of the
stable motions, sketched above, depends quite essentially on
two assumed properties of the oscillator (that is, the pendu-
lum): (a) its anisochronicity, which allows the system to satis-
fy the condition F/f = an odd whole number, by adjusting the
value of f; and (b) the existence of frictional dissipation, which
appears essential to the stability of the quasi-stationary
regimes. In reality, however, careful experiments have shown
that the quantization phenomenon occurs even in the absence
of these assumptions—a fact of physics not accounted for by
the mathematical models. Once again we are confronted with
evidence of a new physical principle.

Argumental Oscillations and Planck’s Quantum of Action
As we noted earlier in this article, Doubochinski’s pendu-

lum is only a convenient pedagogical example of a very large
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Figure 8
PHASE DIAGRAM OF PENDULUM TRAJECTORY

In this phase diagram, �p is the phase corresponding to
a “stationary system.”
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class of oscillating systems, in which the strength of the
“external force” depends on the momentary position (or con-
figuration) of the system, and not only upon the time. More
difficult to realize in a simple mechanical model, but more
natural from a physical standpoint, is the case of a spatially
extended oscillator—idealized here as a charged body fixed
to a spring—interacting with a high-frequency electromagnet-
ic field (Figure 9).

With one very important difference, this case closely
resembles the picture of the “elementary oscillators” con-
sidered by Max Planck in his studies on so-called “black-
body radiation.” Blackbody radiation was conceived hypo-
thetically as the equilibrium radiation field resulting from
the emission and absorption of electromagnetic radiation by
a large number of atoms or molecules in a cavity with
reflecting walls. Regarding the atoms in first approximation
as an aggregate of “elementary electromagnetic oscillators,”
Planck counterposed the hypothetical spectral distribution
of blackbody radiation as a function of temperature, pre-
dicted by calculations based on the commonly accepted,
Maxwellian “laws of electrodynamics,” to the completely
different spectral characteristics actually observed in exper-
iments. To account for this gross discrepancy, Planck
hypothesized a new physical principle, referred to as the
“elementary quantum of action,” shaping the interaction
between the oscillators and the radiation field in a manner
which contradicts the assumptions of Newtonian-
Maxwellian physics. The universal character of Planck’s
quantum hypothesis was subsequently confirmed in count-
less experiments.

However, the hypothetical “elementary oscillator,” which
Planck chose as the starting-point for his original analysis, was
essentially equivalent to the one assumed in the classical case
of “forced oscillations.” In particular, the spatial extension of
the oscillator itself is ignored in characterizing its interaction
with the radiation field.

What happens if we drop this arbitrary assumption, and
consider instead the case, where the amplitude of the oscillat-
ing body’s motion is not small relative to the wavelength of the
field? In that case, as it moves, the body experiences the field

at different positions, as well as times. We thus have a case of
“argumental oscillations” of a somewhat different sort than
Doubochinski’s pendulum; but which, in agreement with
Doubochinski’s principle, turns out also to have a discrete set
of “quantized” amplitudes.8 Those values can be calculated
on the basis of general methods that he and his colleagues
have developed.

The interesting point is, that Doubochinski’s analysis does
not depend in any explicit way on Planck’s quantum of action,
nor does it presuppose that the system be microscopic in
scale. Laboratory experiments, carried out by Doubochinski
and his collaborators on macroscopic systems simulating the
idealized system under consideration, exhibit quantized
amplitudes whose values are close to those predicted by his
methods. This suggests that Doubochinski’s discovery reflects
a still more comprehensive principle than the Planck quantum
of action, as presently understood—a general principle that
would embrace the microscopic quantum of action, macro-
scopic quantization as demonstrated by Doubochinski’s pen-
dulum, and the characteristic quantization of astronomical
systems, including not only the planetary orbits, but also such
things as spiral-galactic arms and the rates of rotation of many
astronomical objects. In fact, such a general principle is
already implicit in the work of Johannes Kepler. It opens up a
vast domain for further research.

It is important to emphasize the fundamental difference
between Danil Doubochinski’s approach and that of various
physicists and mathematicians who, over the years, have
attempted to derive the “quantization” of microscopic systems
from classical mechanics, by introducing “nonlinear” terms in
a more or less arbitrary way into the equations of motion. As
we explained above, Doubochinski’s amplitude quantization
is an experimentally confirmed discovery of a real physical
effect, which cannot be mathematically deduced from classi-
cal mechanics. Also, Doubochinski does not attempt to
deduce Planck’s blackbody radiation law or the laws of quan-
tum mechanics from his principle; he merely calls attention to
the striking coherence between quantum phenomena on the
microscopic scale, and the behavior of argumental oscillations
on the macroscopic scale.

Mathematical Methods
The essence of Doubochinski’s general method for calculat-

ing the values of the quantized amplitudes is worth briefly
mentioning here, because it provides a more synthetic view-
point on the phenomena which we examined above, in some-
what painful detail, in the case of the pendulum.

We assume, in agreement with experiment, that the oscil-
lating system, moving under the influence of a spatially
inhomogeneous, high-frequency “field,” will execute a
quasi-periodic motion whose basic period is close to that of its
natural, undisturbed motion, but whose amplitude and phase
may vary in a certain fashion in adapting to the “field.” Any
periodic motion through a spatially inhomogeneous field has
the effect of “modulating” the time-function of the external
force, experienced by the oscillator, in such a way as to gen-
erate a large array of harmonic frequencies “spaced” at inte-
gral multiples of the base-frequency of the oscillator itself
(Figure 10). If the external frequency is equal to an integral
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Figure 9
DIAGRAM OF THE DOUBOCHINSKI-PLANCK

OSCILLATOR
The differential equation according to classical physics is
ẍ + �ẋ + �0

2x = A sin(vt – kx). v = 2 πF; k = wave number.
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X axis

Monochromatic electromagnetic wave



multiple of the undisturbed characteristic frequency of the
oscillator itself, then that “natural” frequency will be among
the harmonics. As a result, the pendulum can bring itself into
resonance with the “signal,” generated by its own space-time
modulation of the external field, thereby drawing the power
needed to maintain a stationary regime!

Those interested can find a detailed presentation of this
method in the technical literature.9 Here I only note the fol-
lowing: In the case of Doubochinski’s modified Planck oscil-
lator interacting with a monochromatic electromagnetic wave,
the mathematical expression for the harmonics is connected
with the trigonometric series for the result of the frequency-
modulation of a sine wave by another sine wave of different
frequency, which is well-known from radio technology. The
coefficients of that series are given by Bessel’s functions. In this
manner, Doubochinski arrives at a formula for the quantized
amplitudes of the oscillator in terms of extrema of the Bessel
functions. In the case of Doubochinski’s pendulum, one
obtains very nearly the same values, as derived from our more
elementary consideration of stationary regimes.

Jonathan Tennenbaum, based in Berlin, heads the Fusion
Energy Foundation in Europe and is a scientific advisor to
Lyndon LaRouche. He can be reached at tennenbaum@debi-
tel.net.

Notes _____________________________________________________________
1. The photoelectric effect concerns the emission of electrons from a metal

when irradiated by light. It is found that the energy of the individual emitted
electrons is largely independent of the strength (amplitude) of the light, but
increases with its frequency. For an atom or molecule irradiated by light, the
energy levels to which the atom can be excited depend on the frequency of
the light, but—except for extremely intense light—not on the light intensity.
Generally speaking, the higher the frequency, the larger the range of dis-
crete states that can be excited, up to the point of ionization.

2. By their very nature, standard computer algorithms for the solution of dif-
ferential equations introduce artifacts which are present neither in the
actual mathematical function described by the equation, nor in the real
physical process. In the present case, where the value of the quantized
amplitude is necessarily a discontinuous function of the initial conditions,
the commonplace algorithms are doomed to fail. To develop useful com-
puter methods for this sort of problem, it is necessary to take account of
the essential features of the physical process, as demonstrated by actual
experiments.

3. Doubochinski compares the mean radii of the planetary orbits with the calcu-
lated series of quantized amplitudes of a simple argumental oscillator (essen-
tially Doubochinski’s version of the Planck oscillator, described in the present
article), scaled to the Earth orbit radius as “1.” He finds that the values for the
orbital radii agree quite closely with quantized amplitudes of the argumental

oscillator (see Note 9). The latter series contains many amplitudes which do
not correspond to observed planetary orbits; these amplitudes would corre-
spond, if the analogy with a simple argumental oscillator holds up, to possi-
ble orbits which are not occupied in the present solar system.

These additional orbits are not permitted, however, by Kepler’s harmon-
ic laws. The latter, it should be noted, identify key features of the solar sys-
tem— particularly the unstable region of the asteroid belt—which are not
accounted for by Doubochinski’s simple model, and point to the action of a
higher principle. This being said, Doubochinski’s preliminary results are of
great interest, pointing in the direction of an oscillatory theory of gravitation,
for which many indications already exist.

4. Doubochinski points out that the functioning of the original Hertz oscillator,
with which Heinrich Hertz first demonstrated the transmission of electro-
magnetic waves in 1888, depends on an effect of nonlinear “bundling” of
electrons in the electrical discharge exciting the oscillator, which was not
known or understood in Hertz’s time.

5. In the 1940s and 1950s, Rocard observed the existence of stable regimes
in a pendulum interacting with an oscillating magnetic field, and also wrote
down a differential equation to describe the motion. However, he was not
able to arrive at a satisfactory understanding of the phenomenon, nor did
he apparently observe the quantization of amplitudes.

6. According to classical mechanics, the net change in velocity in traversing
the zone of interaction, is equal to the time-integral of the force acting dur-
ing the corresponding time, that is, the total area under the sine-wave curve
enclosed between the moments of entry and exit from the zone.

7. Interestingly, Doubochinski’s pendulum restores the “lost isochronicity” of
the circular pendulum, by evolving toward a stable regime in which a con-
stant amplitude is maintained.

8. It is worth noting, that in this case the dependence of the external force on
the position of the oscillating body is a continuous function. Nevertheless,
amplitude quantization occurs, just as in the pendulum, but with a different
discrete series of amplitude values.

9. See, for example, the paper by D.B. and J.B. Doubochinski, “Amorçage
argumentaire d’oscillations entretenues avec une série discrète d’ampli-
tudes stables,” EDF Bulletin de la Direction des Etudes et Recherches,
Série C, Mathématiques, Informatique, No. 3, 1991, pp 11-20.
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Figure 10
SPECTRUM OF SELF-GENERATED HARMONICS

Shown is the region of self-generated harmonics by the
movement of the pendulum in the function that deter-
mines the action of the external force. The harmonics
are frequencies of the approximate form of F – nf, where
n is a whole number.
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Figure 11
MULTIPLE ARGUMENTAL PENDULUMS 

Multiple pendulums with different natural frequencies
are driven by a single high-frequency magnetic field.
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