


The discovery in 1984 of an alu-
minum-manganese alloy showing

the “forbidden” pentagonal symmetry
created a crisis in crystallography, and
implicitly in all physical science, which
has not been satisfactorily resolved. So
far, attempts to explain how it is possible
for a lattice to show quasi-periodic sym-
metry have required recourse either to a
structure made up of several different
unit cells, or to mathematical modelling
of multidimensional space. Neither
appears satisfactory to me.

By re-examining one of the fundamen-
tal assumptions of crystallography,
returning to the method of Johannes
Kepler in his Six Cornered Snowflake, I
have found a simple means of construct-
ing a three-dimensional lattice of pentag-
onal symmetry. By varying one of the tra-
ditional axioms of crystallograpy to per-

mit interpenetration of the cells, a regu-
larly repeated dodecahedral or icosahe-
dral unit cell may fill space, producing a
self-similarly enlarging dodecahedron or
icosahedron. From this it may be seen
how a crystal of five-fold symmetry might
grow. It is beyond my means presently to
verify whether any of the variety of
known quasicrystals corresponds to this

construction. I put forward this hypothesis
as a contribution to the search for an
explanation to this interesting new
phenomenon, which will serve in any
case as a construction of geometric
interest.

Pentagonal ‘Tiling’
My solution derives from a construc-

tion for creating self-similar plane pen-
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Evidence of five-fold symmetry
first appeared in 1984 in
samples of rapidly quenched
aluminum-manganese alloys
obtained by Dany Shechtman,
et al. These produced diffraction
patterns like the one at right, in
which 10 points surround a
central one in a decagonal
pattern.
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Crystals of an aluminum-copper-lithium alloy (Al6CuLi3)
obtained in 1986 showed the shape of the rhombic
tricontahedron, with single grains approaching a size of 1
millimeter. The figure, discovered by Kepler and reported in
his work The Six-Cornered Snowflake, consists of 30
rhombuses whose diagonals are in the golden ratio.

From Quasicrystals, Janot (Oxford: Clarendon, 1992)

An almost millimeter-sized single grain of an AlCuFe alloy.
Dodecahedral crystals of aluminum-iron-copper alloy were
first obtained in 1988, followed by aluminum-palladium-
manganese in 1990. They were formed by regular slow-
casting methods and behaved stably.



tagons. I discovered this construction
one day while contemplating the mean-
ing of a fragment from Diophantus’ lost
work “On Polygonal Numbers,” which
describes a proposition by the classical
Greek geometer Hypsicles:

“There has also been proved what was
stated by Hypsicles in a definition, name-
ly, that ‘if there be as many numbers as
we please beginning from 1 and increas-
ing by the same common difference,
then, when the common difference is 1,
the sum of all the numbers is a triangular
number; when 2, a square number; when
3, a pentagonal number [; and so on].
The number of angles is called after the
number which exceeds the common dif-
ference by 2, and the sides after the num-
ber of terms including 1.’ ”1

The problem of the quasicrystal is
related to the so-called “tiling” problem
(how to cover the plane by repetition of
like shapes). However, the solution arose
by considering the crystallographic prob-
lem from the standpoint implied in the
Diophantus fragment: How to create
self-similarly growing figures? Self-simi-
lar squares and triangles may be pro-
duced from square and triangular tiles in
a manner that is fairly easy to see. The
squares completely cover the area they
enclose. The triangles leave holes, also
of triangular shape, and thus the princi-
ple of tiling (that the plane be complete-
ly covered) is modified (Figure 1).

To construct self-similar pentagons, it
is necessary to modify the principle of
tiling in the opposite direction—that is,
to allow the pentagons to overlap and
thus to “overfill” the plane. By such
means, a succession of self-similar regu-
lar pentagons consisting of 1,5,12,22,35,
. . . pentagonal units may be constructed
(Figure 2). The second-order difference
of the series of pentagonal numbers so
constructed, is, as Hypsicles noted, 3;
that for the square numbers is 2; and for
the triangular numbers, 1.

Hypsicles’ expressed concern with the
triangle, square, and pentagon suggest-
ed to me that he must have been inves-
tigating the five regular or Platonic
solids, whose faces are restricted to
these three polygons. From that consid-
eration, I saw that there existed con-
structible mathematical functions, anal-
ogous to what we are familiar with as
“squared and “cubed,” for each of the
Platonic solids.

Thus, on the base of the plane figure
“2-triangled,” one may construct the
solid “2-tetrahedroned,” which has the
charming feature of concealing a regular
octahedron in the unfilled space in its
center. Like 2-cubed, 2-tetrahedroned is
a larger tetrahedron of doubled edge
length. However, its numerical value,
that is the count of its unit cells, is 4, not
8. Also on 2-triangled as a base, may be
constructed “2-octahedroned,” and “2-
icosahedroned.” The latter solid, which
consists of 12 icosahedral unit cells,
“overfills” the three-dimensional space
by causing each of its unit cells to inter-
penetrate (Figure 3).

Finally, on the base of “2-pentagoned,”
one may construct “2-dodecahedroned,”
a dodecahedron whose edges are twice
the length of the original, and which
consists of 20 interpenetrating unit cells
(Figure 4). These solid figures may be
continued indefinitely, always produc-
ing a larger solid self-similar to the orig-
inal unit cell.

I believe that atoms arranged at the
vertices of the figure of n-dodecahe-
droned would answer to the require-
ments of a quasicrystal lattice which
exhibits a dodecahedral crystal form,
such as the AlFeCu and AlPdMn alloys
first produced in 1988 and 1990. The
lattice points of this model arrange
themselves in decagonal patterns
around a given center, as I elaborate
below, just as is seen in diffraction stud-
ies of quasicrystals. Also corresponding
to the evidence of diffraction images, the
spacing of the n-dodecahedroned lattice

in certain linear directions follows the
golden section.

Hexagonal vs. Pentagonal
Modern crystallography originated

with Johannes Kepler’s studies of the
“fitting together” (congruentia or harmo-
nia) of figures in two and three dimen-
sions. Of special importance to the
development of crystallography was his
study of the packing of spheres. In a sin-
gle layer of spheres, pushed together in
the most compact way, each sphere is
touched by six others. This hexagonal
theme is continued into the three-
dimensional configurations of close-
packed spheres.

As Kepler showed in his Six Cornered
Snowflake, when 12 spheres are forced
together around a central one (closely
packed), the connection of the spherical
centers forms a cuboctahedron, a solid
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Figure 1
3-TRIANGLED

Note the triangular gaps in the
tiling of the grey triangles which
build 3-triangled.

Figure 2
3-PENTAGONED

Five unit pentagons
interpenetrate to form 2-
pentagoned, and 12 to
form 3-pentagoned.



which may also be produced by the
intersection of four circular hoops, each
dividing the other into six parts (Figure
5). Hence the six-fold, or hexagonal
symmetry. (The forms deriving from
cube, octahedron, and tetrahedron are
broadly considered as of hexagonal
symmetry but of a lower class.)

Kepler wondered if an arrangement of
that sort, at the microscopic level, might
not be the reason for the ever-present
hexagonal symmetry of snowflakes. He
also noted that non-living things tended
toward the hexagonal symmetry, while
plants and animals often exhibited the
pentagonal symmetry, and the associat-
ed golden ratio, or divine proportion,
which is expressed in the ratio of edge
length to diagonal on the face of a pen-
tagonal dodecahedron.

His short work on the snowflake, writ-
ten in a playful tone as a New Year’s gift
to his ducal sponsor, exposes his cre-
ative genius in a most compact way, and
ranks among the most seminal pieces in
modern science. Of special interest to
crystallography, is his description of his
discovery of a new solid, the rhombic
triacontahedron, the shape exhibited by
the first quasicrystals with clearly distin-
guishable grains grown in 1986.

What began as Kepler’s musings on the

snowflake was later followed up by many
others into the modern developments of
crystallography. Notable was the work of
the Abbé Haüy in the late 18th Century,
explaining the regular shapes and angles
of crystals as a result of repetition of an
integrant form; Mitscherlich through his
chemical investigations of crystal isomor-
phism; Pasteur with his groundbreaking
discovery of hemihedral crystals of mirror
symmetry; von Federov, who created a
table of 10,000 different crystals, allow-
ing the identification of an unknown sub-
stance by measurement of its facial
angles; and Max von Laue who demon-
strated in 1913, by means of X-ray dif-
fraction, that there were indeed tiny
points in the crystal lattice, corresponding
to what had, by then, been assumed to be
the locations of atoms.

A consistent feature of all these studies
was that the crystals were considered to
be made up of units which touched each
other at their surface boundaries. With
the n-dodecahedroned construction, I
am suggesting that a new kind of “fitting
together” be considered, in which a
periodic form of interpenetration of the
structural units takes place.

In Kepler’s early concepts, the struc-
tural units were individual spheres. Haüy
in 1784 proposed that crystals were built

up of little bricks, or parallelopipeds, of
varying shape for each substance. That
view reached a high stage of develop-
ment in the early 19th Century when
geometrical studies showed that only 32
types of crystal symmetry were possible.
Then Frankenheim (1842) and Bravais
(1848) established the concept of the
unit cell, a way of representing the rela-
tionship of the lattice points to each
other in the form of 14 different types of
brick-like solids, a lattice point at each
corner, which could be piled up to rep-
resent all possible crystal forms—or so it
was thought.

It was at first supposed that the lattice
points might correspond to the chemical
molecules of the substance. But the
development of X-ray crystallography
tended to the view that the crystal was
composed of individual atoms, and the
lattice points of crystallographers
became synonymous with atoms or
ions. Crystals of compound substances
came to be explained as interpenetrating
combinations of the basic known space
lattices. With the development of the
electron theory, the glue that held the
crystal together was thought to be the
interaction of electrons, although metal-
lic crystals posed a special problem.
Thus, essentially forces emanating indi-
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Figure 3
2-ICOSAHEDRONED

The large icosahedron envelops 12 interpene-
trating unit icosahedra. Each face is 2-triangled.

Figure 4
2-DODECAHEDRONED

2-dodecahedroned contains 20 interpenetrating unit
dodecahedra. Each face is 2-pentagoned. (See color
reproduction on back cover).



vidually from each point of the crystal
seemed to hold the crystal together. If
each atom acted according to its
instincts, the job would be done.

But these views were challenged after
1984 with the discovery by Israeli metal-
lurgist Dany Shechtman of metal alloys
which showed the forbidden five-fold
symmetry, and a quasiperiodic ordering of
lattice points in their diffraction patterns.
There seemed to be no way to imagine by
the known rules of crystallography that
such a structure could come together.

The Principle of Homogeneity
I believe I have shown in the n-dodeca-

hedroned construction, a way of extend-
ing the so far accepted laws of crystallog-
raphy to account for a crystal of five-fold
symmetry. With one significant variation
in the usually accepted axioms of crystal-
lography, a regular unit cell, repeated in
periodic fashion, can produce a dodeca-
hedral or icosahedral crystal form. The
required variation is, that instead of cells
which fill space with no gaps, we must
allow an interpenetration which pro-
duces an “overfilling” of the space.

I have spent some time trying to imag-
ine how this variation might alter the
relationship of one lattice point to
another. Is it still possible to describe the
structure as the result of the individual
action of each constituent atom or ion,
or is it necessary to suppose a sort of col-
lective action or field determining the
growth? If the quasicrystal is describable

as the result of forces emanating from
each individual atom, then geometrical-
ly each lattice point must be indistin-
guishable from the next; that is, every
atom must have the remaining atoms
arranged about in the same manner. This
is known in crystallography as the prin-
ciple of homogeneity.

In the n-dodecahedroned lattice, 30
edges protrude from each vertex in the
30 directions of the vertices of an icosi-
dodecahedron. (The precut spheres of
the Zome brand construction kits pro-
vide just enough positions for this
arrangement.) In a model of 2-dodeca-
hedroned, the central vertex at which 20
dodecahedral unit cells come together,
will show these 30 directions. As the
model is expanded, each vertex will
show the same arrangement. As the
icosidodecahedron may be produced by
the intersection of 6 rings or hoops, each
one dividing the other into 10 parts, one
sees that there are 6 planes in which a
decagon surrounds a central point.

However, as the n-dodecahedroned
lattice grows, something new arises.
Because of the overlap of cells, a vertex
from an adjacent interpenetrating
dodecahedral cell cuts the original edge
in a golden section. Thus, around each
vertex is a group of 30 nearer vertices
coming from interpenetrating cells.
However, closer inspection shows that
each vertex is not the same. Because of
the fact that the edges are cut in golden

section, there seem to be ver-
tices which are distant by the
smaller part of the section, and
others which are distant by the
larger part, from the nearest
neighboring vertex.

Thus the principle of homo-
geneity, requiring that every
atom have the remaining
atoms arranged about it in the
same manner, is violated.

This conclusion, apparently
consistent with some of the
results of X-ray diffraction stud-
ies, requires more thorough geo-
metric investigation. If true, it
would seem to require that the
quasicrystal cannot be con-
ceived as resulting from uniform
forces emanating from each
atomic center. We might
instead suppose that the func-
tional unit of formation is the

whole dodecahedron. We seem thus to
return to the idea of the unit cell as a
functional unit, rather than merely the
descriptive unit it has become for mod-
ern crystallography.

However, it were then necessary to
provide a reason why the dodecahedral
cells assemble in the fashion that they
do. The simplest explanation would
seem to be that the whole crystal seeks a
dodecahedral form, and finds it in the
only way which geometry permits such
a self-similar growth.

Such a hypothesis would be repug-
nant to the extreme mechanist or reduc-
tionist, who seeks to explain all events of
nature from presumed elementary parti-
cles and the forces of attraction or repul-
sion between them. Yet, we have not
found a clearer one. We hope to discuss
this aspect of the matter further in future
communications. We have also not
addressed here the implications of the
appearance of the dodecahedral form
for our studies of the nuclear model of
Prof. Robert J. Moon. The appearance of
the elements aluminum (Z = 13), man-
ganese or iron (Z = 25,26) and palladi-
um (Z = 46) is most suggestive in this
respect.

Notes _____________________________________
1. Translation by Ivor Thomas, Selections

Illustrating the History of Greek Mathematics,
(Cambridge, Mass.: Harvard University Press,
1993) p. 515 (from Diophantus, On Polygonal
Numbers [5], Dioph. ed. Tannery i. 470. 27-
472. 4).
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Figure 5
CLOSE PACKING OF

SPHERES
In a plane, six spheres can sur-
round a central one in a
hexagonal array (a). In three
dimensions, three more
spheres above and three below
can touch the central sphere,
fitting in the hollows left by the
hexagonal layer. The total of
12 spheres surrounding the
central one has the appear-
ance of the Archimedean
solid, the cuboctahedron (b).

(a) (b)




