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EDITOR’S NOTE

In 1690, Jakob Bernoulli, brother of Johann, published a
challenge to the scientific world in the Acta Eruditorum of
Leipzig, to determine the geometry of the catenary. Johann
Bernoulli, Gottfried Leibniz, and Christiaan Huygens each
independently solved the problem. All three solutions were
published in the Acta in 1691.

Johann Bernoulli then treated the subject in his Lectures
on the Integral Calculus, which were written out for the use
of the mathematician Guillaume Marquis de L’Hôpital in
1691-1692, while Bernoulli was residing in Paris. The
excerpts presented here are from this work.

Part I is on the physics of the hanging chain. Part II provides
the derivation of the differential equation of the curve whose
geometry corresponds to the physics of the hanging chain. Part
III is the proof that Leibniz’s solution, based on the logarithmic
curve, is identical. These three parts are Lecture Thirty-Six, part
of Lecture Twelve, and Lecture Thirty-Seven, respectively.

The text is from Die erste Integralrechnung, Eine Auswahl
aus Johann Bernoullis mathematischen Vorlesungen über die

Methode der Integrale (Leipzig and Berlin: Wilhelm
Engelmann, 1914), itself a translation into German by
Gerhard Kowalewski of a selection of lectures from the Latin
original, Lectiones mathematicae de methodo integralium.
The figures are reproduced from the Kowalewski translation.
The reader should not assume that the figures are exact con-
structions. The Kowalewski translation may be found at http://
historical.library.cornell.edu/cgibin/cul.math/docviewer?did=
Bern002&seq=5

All material in square brackets has been supplied by the
translator. The footnotes are by the German (Kowalewski)
or the English translator (Ferguson), as noted in square
brackets at the end of each note.

The translator thanks the staff of the Burndy Library, of
the Dibner Institute for the History of Science and
Technology, Massachusetts Institute of Technology,
Cambridge, Massachusetts, for making available a copy of
the Latin original, Lectiones mathematicae de methodo
integralium, as an aid to translation.



I. Lecture Thirty-Six
On Catenaries

The importance of the problem of the catenary in
Geometry can be seen from the three solutions in the
Acta of Leipzig of last year (1691), and especially from

the remarks that the renowned Leibniz1 makes there. The
first to consider this curve, which is formed by a free-hang-
ing string, or better, by a thin inelastic chain, was Galileo.
He, however, did not fathom its nature; on the contrary, he
asserted that it is a parabola, which it certainly is not.
Joachim Jungius discovered that it is not a parabola, as
Leibniz remarked, through calculation and his many exper-
iments. However, he did not indicate the correct curve for
the catenary. The solution to this important problem there-
fore remained for our time. We present it here together with
the calculation, which was not appended to the solution in
the Acta.

There are actually two kinds of catenaries: the common,
which is formed by a string or a chain of uniform thickness, or
is of uniform weight at all points, and the uncommon, which
is formed by a string of non-uniform thickness, which there-
fore is not of uniform weight at all points, and certainly not
uniform in relation to the ordinates of any given curve.

Before we set about the solution, we make the following
assumptions, which can easily be proven from Statics.

1. The string, rope, or chain, or whatever the curve consists
of, will be assumed to be flexible and inelastic at all of its
points, that is, it undergoes no stretching as a result of its
weight.

2. If the catenary ABC [Figure 1] is held fixed at any two
points A and C, then the necessary forces at points A and C,
are the same as those which support a weight D, that is equal
to the weight of the chain ABC and is located at the meeting
point of two weightless strings AD and CD, that are tangent to
the curve at points A and C. The reason for this is clear:
Because the weight of the chain ABC exerts its action at A and
C in one direction [at each point], namely, in the directions of
the tangents AD and CD, and the pull of the same or equal
weight D at A and C likewise goes in the directions of AD and
CD. Therefore the necessary forces at points A and C must also
in both cases be the same. Accordingly, one obtains the nec-

essary force at the lowest point B, when one seeks the force
that the weight E [Figure 2] exerts at the same point, when it is
held by two weightless strings, one of which is tangent to the
curve at B, and therefore is horizontal, while the other is tan-
gent to the curve at point A.

3. When a chain fastened at points A and C is then fastened
at any other point F [Figure 3], so that one could remove the
portion AF, the curve represented by the remaining piece of
chain FBC does not change, that is, the remaining points will
stay in the same position as before the fastening [at F].

This needs no proof, because Reason advises it and experi-
ence lays it daily before our eyes.

4. If we retain the previous assumptions, then before and
after the fastening [at F], the same (that is, the original) force
must obtain at particular positions on the curve, or, what
amounts to the same thing, a point will be pulled with the
same force after the fastening [at F] as before it. This is noth-
ing but a corollary of the preceding number. Consequently, as
one lengthens or shortens the chain BFA, that is, wherever one
chooses the fastening point F, the force at the lowest position
B neither increases nor decreases, but always remains the
same.

5. The weight P [Figure 4], which is held by any two arbi-
trarily situated strings AB and CB, exerts its forces on the points
A and C in such a relation, that the necessary force at A is to
the necessary force at C (after drawing vertical line BG), as the
sine of angle CBG is to the sine of angle ABG, and the force of
the weight P is to the force at C as the sine of the whole angle
ABC is to the sine of the opposite angle ABG. This is proven in
every theory of Statics.2

With these assumptions, we find the common catenary
curve in the following manner. Let BAa be the desired curve
[Figure 5]; B, its deepest point; the axis or the vertical through
B, BG; the tangent at the deepest point, which will be hori-
zontal, BE; and let AE be the tangent at any other point A.
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Draw the ordinate AG and the parallel EL to the axis. Let

and the weight of the chain, or, since it is of uniform thickness,
the length of the curve BA = s. Since at point B, an ever constant

force will be required (by assumption 4), whether the chain be
lengthened or shortened, that force, or the segment C = a
expressing it, will therefore be a constant.3 Imagine now that the
weight of the chain AB is concentrated at and hangs at the meet-
ing point E of the tangent strings AE, BE; then (by assumption 2)
the same force is required at point B to hold the weight E as was
required to hold the chain BA. But the weight E (by assumption
5) is to the force at B, as the sine of the angle AEB, or as the sine
of its complementary angle EAL is to the sine of angle AEL, that
is, as EL is to AL. Wherever on the curve one chooses the fixed
point A (the curve always remains the same, by assumption 3),
the weight of the chain AB is to the force at B [which force equals
the constant a], as EL is to AL, that is,

and if one inverts,

Hence it follows that the catenary BA is the same as that curve
whose construction and nature we have given above, by the
method of inverse tangents [provided here as Part II, below], where
we first converted the proportion dy : dx = a : s to the following:

at which point the curve was constructed through the rectifi-
cation of the parabola as well as through the quadrature of the
hyperbola.

IV. To find the nature of the curve so created that DC : BC =
E : AD [Figure 6].

Let AC = x, CD = y, AD = s [and the given constant segment
E = a]. By assumption,

However, to be able to eliminate the letter s (which is always
necessary in the determination of curves), one must proceed
thus:

therefore,

and

therefore

and the integral thereof,

From this is obtained
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II. Part of Lecture Twelve on Inverse Tangents
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and
13

If the equation is simplified, one obtains

and finally

The same result is achieved otherwise and more easily in the
following manner.

Because then5

and hence

To be able to take the integral on both sides, both sides are
multiplied by dx. Then one obtains

If the integral be taken, the result is

and after simplifying the equation,

as before.
Now we come to the construction of this curve. It should be

noted, first of all, that because and hence x > s,

the invariant origin of x lies beyond the vertex B, and indeed
at the distance E, since if s = o, then x = a necessarily. Hence
if we wish to place the origin of x at the vertex itself, we must

set x = x + a. Then the equation is 

transformed into the following:

which we will now construct in a three-fold way.

Multiply the equation by a. Then

Now draw the normals AK, GH, which will intersect at B
[Figure 7]; take BA = a and draw with vertex B and midpoint
A the equilateral hyperbola BC. Construct further a curve DJ,
such that BA is everywhere the mean proportional between
KC and KD, that is, that

Next, draw the parallel AF and make the area of the rectangle
AG equal to that of HBKDJ. If we now extend DK and FG, their
intersection E will lie on the desired curve.6

The curve admits of another and easier construction in the
following manner. Draw the line AC and make the area of rec-
tangle AG equal to double the hyperbolic area ABC. Then
after the extension of CK and FG, the point E again will lie on
the same desired curve.7, 8

It may be constructed in yet another way, by means of the
rectification of a parabolic curve, in the following manner.

Because therefore

Hence one must find a certain curve BL, whose differential is

Then BL itself will be equal to EC. But one

finds this curve thus: From

subtract dx2. Then 2adx2 / x remains. Hence

and
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So that the correctness of our solution be made even clear-
er, we will test whether it agrees with the solution of Mr.
Leibniz. His construction of the catenary is of the following
nature.

[FIG. 8, OLD FIGURE 118, ABOUT HERE.]
Let NCP be an unbounded horizontal straight line [Figure

8], and above it let the logarithmic curve OMBQ be drawn,11

whose subtangent therefore is everywhere the same. Choose
the ordinate CB, which is equal to the subtangent, and take on
both sides of it arbitrary and equal segments CD, CP. Now
make DA equal to the semi-sum of the ordinates DM, PQ.
Then, he asserts that the point A lies on a catenary.12

In order to test, whether this curve is the same as the one we
have indicated, we must see whether the nature of the curve
BA is expressed by the same differential equation. Let then CB
or the subtangent = a, BG = x, GA = CD = y, DM = z, Gg =
dx, Dd = Ha = dy. Then, by the nature of the logarithmic
curve, zdy = adz, thus

Since by construction, CD = CP, then DM : CB = CB : PQ,

therefore and that is, DA by con- 
struction,

therefore

When solved, this equation yields,

therefore

If one substitutes this value of z in the earlier equation

the result is

or

Dividing both sides by one obtains

Because this equation is the same as the one that we have
found, it follows that the curve BA is also our catenary, and
that the Leibnizian construction, as different as it may be from
the one we have given above, indeed produces no other line.

It remains to add the most important properties of the sim-
ple catenary, and that with calculation and proof, which was
not done in the Acta. We will use the figure that appears in the
Acta [Figure 9]. There, EBF is the catenary, B its deepest point,
BA the axis, BG the equilateral hyperbola that can be termed
generative, and BH the parabola, through whose rectification
the catenary line EBF is constructed.
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will therefore be equal to KL itself. The curve BL is conse-
quently a parabola of parameter 8AB. If this BL be laid out as
a straight line and abutted to point C as ordinate, the other
endpoint E again will lie on the desired curve BE.9,10

Corollary. The length of the curve BE is equal to the hyper-
bolic ordinate KC. If the length of BE is designated by s, then

III. Lecture Thirty-Seven
Continuation of the Same Subject: On Catenaries

Figure 8



1. Draw the tangent FD; then AF : AD = BC : (BF, the
curve), because

However we found by calculation that

Therefore, the statement is correct.
2. AE or AF is equal to the parabolic curve BH, minus the

segment AG. This is clear, because by construction, EG was
taken equal to BH.

3. The length of the curve BE or BF is equal to the segment
AG; that is, the portions of the catenary, if one lays them out
upon the axis as ordinates, form an equilateral hyperbola.13

That is a remarkable property of this curve. We have proven
this by the method of inverse tangents (see page 31).

4. The area of the catenary region BAE or BAF is equal to the
rectangle of BA and AF, minus the rectangle of CB and FG.
Since of course

therefore

Therefore the integral of xdy, that is, the complement of the
area BAF, is equal to the integral of the latter, and therefore
equal to

and consequently the area BAF itself
5. The length of the curve MNO, the involute of which

forms the catenary BE, is the third proportional of CB and AG.
To discover that this is so, one would first find the length of the
unwinding tangent line EO; above, in the article on the devel-
opment of curves [in Lecture Sixteen, not translated here], we
have shown that in general, for all curves, it is equal to

For the curve in question then,

and, since

hence

From this is obtained, for the whole expression,

From this, subtract that which the assumption x = o yields;
then what remains is

Therefore a or CB is to or AG, as AG is to MNO.

6. The unwinding tangent EO is the third proportional of CB
and CA. For, since

a or CB is to a + x or CA as CA is to EO.
7. The line BM, which extends to the beginning of the curve

MNO, is equal to CB. Since of course x = o, the unwinding
tangent EO, which is now BM, becomes equal to a = CB.

8. MP is twice BA. Because

the differential will be

But the triangle Oop is similar to triangle ESR and hence
also to triangle eER; consequently Ee : ER = Oo : po,
that is,
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therefore 2dx = po and, if integrated, 2x = PM.14

9. The area of the rectangle of CB and PO is twice that of
the hyperbolic area ABG. Since of course Ee : Oo = eR :
pO, that is,

therefore

thus

and, when integrated,

10. The segment CP is bisected by the point A. Since of
course MP = 2x, the result is that BP = 2x + a, BP – BA or
AP = x + a = CA.

11. The length of the curve EB is to the length of the curve
MNO as the segment CB is to segment AG. That is because EB,

that is, is to MNO or

as a is to √2
_
a
_
x
__

+
__
x
_
2
_
, and therefore as CB is to AG.

12. If the two rectangles AJ, AK are placed on AG (AJ is
formed from the half transverse axis CB and the segment FG,
and the area of AK is equal to that of the hyperbolic area
BGA); and, from the vertex B along the axis, a segment BL
equal to width KJ is drawn; then point L will be the center of
gravity of the catenary EBF. This will be proven in another
location.

13. If one imagines infinitely many curves drawn from E to
F that are equal in length to the catenary EBF and lays them
out as straight lines, and constructs individual vertical lengths
at the individual points of the particular segment equal to the
respective distances from the line EF, then of all areas formed
in this manner, the greatest is that formed by the catenary.15

This will be proven with the help of the axiom that the cen-
ter of gravity descends as far as it can.
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NASA

Two huge chain catenaries used in the testing of aircraft at NASA’s Vertical Motion Flight Simulation Laboratory.
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1. In Galileo’s Dialogues Concerning Two New Sciences
(1638), the catenary is discussed and its form compared
to a parabola. Joachim Jungius (1669) showed that the
curve is not a parabola, but he was not really able to
define it. Jakob Bernoulli proposed the problem anew in
May 1690 in the Acta Eruditorum, and then it was solved
by Huygens, Leibniz, and Johann Bernoulli. [Kowalewski]

2. Let the force acting along AB be FA, the force acting
along CB be FC, and the weight of P be Fp. The horizontal
component of FA is FA sin∠ABG, opposing the horizontal
component of FC , which is FC sin∠CBG ; and Fp is the
force of gravity on P, and only acts vertically. Because P
is not moving horizontally,

or

and so

as stated in point 5 of this lecture. The vertical compo-
nent of FA is FA cos∠ABG, pulling upward; the vertical
component of FC is FC cos∠CBG, also pulling upward;
and Fp, the weight of P, is of course pulling down.
Because P is not moving vertically, we have

or

Dividing both sides of the equation by FC yields

We proved above that FA /FC = sin∠CBG / sin∠ABG, so
we can substitute here and obtain

and multiplying cos∠CBG by 1 = sin∠ABG / sin∠ABG ,
and rearranging terms in the equation, we get

Now ∠CBG + ∠ABG = ∠ABC, and the Greeks knew
that

so we have

and substituting,

or Fp : FC = sin∠ABC : sin∠ABG, as stated in point 5.
[Ferguson]

3. The force at B is a constant, expressible as the weight of
a segment of chain labelled C, of constant length a (not
related to point a). [Ferguson]

4. If the chain is of uniform density per unit length (call
the density Q), then the weight of chain AB will be Qs,
which increases or decreases as the chain AB = s is
lengthened or shortened; the force at B, which Bernoulli
sets equal to the weight of a segment C of constant
length a, will be Qa. Therefore, the weight of AB is to the
force at B as Qs is to Qa, and therefore as s is to a.
Bernoulli expresses this ratio of forces in terms of a ratio
of lengths, so that it will be in a form solvable by the
method of inverse tangents, as is shown below.
[Ferguson]

5. Here y is considered an independent variable (instead of
x). Accordingly, d 2y = 0 This aid for the conversion of
independent variables is already found in Leibniz manu-
scripts of 1675.

Bernoulli cannot complete the calculation, because he
lacks the logarithmic function. From

it follows that

or, if the axis system is displaced appropriately in the y-
direction,

From this it follows that

The curve is therefore the catenary, which Bernoulli deals
with in a later lecture. [Kowalewski]

6.For the equilateral hyperbola BC, (x + a)2 – y 2 = a 2

or y = √2
_
a
_
x
__

+
__

x
_
2
_

. Therefore KC = √2
_
a
_
x
__

+
__

x
_
2
_

. If BA = a
is the mean proportional between KC and KD, then
KC /a = a /KD or KD = a2/√2

_
a
_
x
__

+
__

x
_
2
_

. Then, if the area of
rectangle AG = aAF is to equal the area of

Notes ____________________________________________________________________________________



then for the curve BE,

and

[Ferguson]

7. For the equilateral hyperbola,

therefore

and the hyperbolic sector

If this be compared with the formula in footnote 5,

the correctness of Bernoulli’s assertion is seen.
On page 37, col. 1, line 23, A must be replaced by B.

[Kowalewski] [For this translation, the correction has
been incorporated into the text.]

8. If the area of rectangle AG is equal to double the area of
hyperbolic region ABC, then we have aAF = 2(area ABC )
or y = EK = AF

[Ferguson]

9. The German edition has AE here, an error for BE. The
expression, “the other endpoint E again will lie on the
desired curve,” taken in light of the two preceding para-
graphs, indicates that BE is meant. This is, in fact, the
same error that Kowalewski corrected on the previous
page of the German edition: The vertex of the catenary
had been mistakenly called A instead of B. See the last
paragraph of footnote 7. [Ferguson]

10. “Hence one must seek a certain curve BL” whose length
s as a function of x, has the differential

Since ds2 = dx2 + dy2,

and

that is, the y-coordinate of BL. So for BL,

[Ferguson]

11. The logarithmic curve is, because of the constancy of the
subtangent, characterized by y ′ = y /c [that is, dy /dx =
y /c ] and is therefore expressed by y = becx.

Because of its relationship with the logarithmic curve,
Leibniz proposed to use the catenary in place of logarith-
mic tables, especially when travelling, because volumi-
nous tables were inconvenient “to schlep across land and
sea.” [Kowalewski]

12. Definition of the subtangent: For a curve y = f(x) with a
line L tangent to it at point (x ′,y ′) the subtangent is the
segment of the x-axis between the x-coordinate of the
point of tangency  (x ′,o) and the intersection of the x-axis
and the tangent line L. [Ferguson]

13. If the length of BE = s is considered a function of x, then

which reduces to

which is the y-coordinate AG of the equilateral hyperbola
BG. [Ferguson]

14. Because

[Ferguson]

15. The proposed constructions may be restated in this form:
Suppose the catenary EBF, in Figure 9, to be a chain with
very fine links. Step 1. At various points along EBF, cut rods
that extend vertically from each chosen point on the cate-
nary curve to the horizontal EF. Attach each rod to the link
it touches. Now extend the chain as a straight line. Use the
free ends of the still-vertical rods to define a line. An area is
now enclosed by the straight chain and the line just
defined, and can be measured. Step 2. Form any number
of other curves whose end-points are E and F, and whose
length is the same as the catenary EBF. Repeat for these
curves the procedure described in Step 1.

Bernoulli asserts that the area derived from the cate-
nary is the greatest of all such areas. [Ferguson]
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