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EDITOR'S NOTE 
This essay was prepared as a memorial presentation for a 

Dec. 20, 1988 meeting in Florence to honor Filippo Brunel
leschi and discuss a solution for restoring his Dome. 

T he one major work of science on which I hope to 
complete my essential contributions is the establ ish
ment of an adequately intel l igible representation of 

the negative curvatu re of physical space-time in the regions 
of s ingu larities with in  a Riemann su rface function of other
wise everywhere positive curvature. 

On this account, I wish to emphasize our indebtedness 
to the relevant work of F i l ippo Brunel leschi .  Although I 
must confess that I do this,  in part, out of love for the 
memory of that great scientist, my principal motive is a 
broader and more immediately practical one. These re
marks are devoted to a brief explanation of that broader 
pu rpose. 

My strength in these matters originates in a project of 
phi losoph ical studies begun at the age of 12, which won 
me forever to the standpoint of Leibniz's Monadology, The
odicy, and certain other writings by the age of between 13  
and 14 .  A l l  that I have accomplished in  relevant matters, is 
derived from my undertaki ng, shortly after that, a defense 
of Leibniz against the arguments of Kant's Critiques. My 
refutation of the central dogmas of Kant, as summarized in  
h is  Critique of Judgment, became the notion of  intel l igibi l
ity of the creative mental processes from which is derived 
everything I deem particularly useful in my attempted con
tributions to human knowledge. 

The overriding importance which I attribute to a Socratic 
treatment of ax ioma tics, over mere formal consistency, 
puts me at a distance from prevai l ing modern ideas about 
scientific knowledge and much closer to the spi rit of the 
Golden Renaissance. In such matters, that is a weakness in 
my work, but also an advantage whenever axiomatic issues 
of fu ndamentals respecting ontology are the proper point 
of emphasis, as is  the case in this matter of the axiomatic 
substrate of notions of cu rvatu re of physical space-time. 
My special viewpoint, so identified , is a valuable contribu
tion to the division of labor on the subject of quantization 
of physical space-time. 

Properly defined, the "quantization" of physical space
time signifies a rejection of the approach to physical science 
associated with the neo-Euclidean formal isms of Descartes, 
Newton,  and so on. I n  the view for which I speak, no dis
crete existence of the sort we tend to associate with naive 
sense certainty is permitted the qual ity of self-evident exis
tence. Rather, everythi  ng which seems to be a discrete exis
tence is something constructed out of what fi rst appears 
to our imagination as an undifferentiated continuum of a 

Multiply connected physical least action: The familiar Red 
Spot in Jupiter's atmosphere. 



constructive-geometric representation of mu ltiply con
nected physical least action. 

At first, the isoperimetric principle defined by Nicholas 
of Cusa suggests that the continuum must be defined in 
terms of mU ltiply connected circular action as the elemen
tary form of physical least action (Figures 1 and 2) .  

Later, with the work of Gauss, Di richlet, Riemann,  and 
Weierstrass, we have the higher geometry of the Gauss
Riemann complex domain .  This latter domain ,  in which the 
characteristic form of functions is associated predominant
ly with e l l iptic and hyperbolic trigonometries, is generated 
by replacing circular with self-s imi lar spiral forms of multi
ply connected least action (Figure 3) . 

From th is more advanced standpoint, the construction of 
the kinds of singu larities associated with electromagnetic 
generation of discrete existence from continuous least ac
tion becomes impl icitly susceptible of intel l igible represen
tation . To an expand ing degree, we are enabled to elabo
rate viable functional representations for processes, when 
adequate such representations of nonlinear processes are 
not possible in any other known way. Additionally, as Rie
mann indicated in his dissertation on representation of an 
arbitrary function, it is impl icit that all really existing physi
cal processes are susceptible of representation from such 
a standpoint (see box, p. 43) .  

The Importance of Negative Curvature 
It is in this setting that the importance of negative cu rva

ture confronts us. The relevance of my axiomatic approach 
and the broader practical importance of reexamining Bru
nel leschi's work will become clearer as we proceed to treat 
the significance of negative curvature. 

The most important class of physical functions are those 
we may describe useful ly as elementarily nonl inear. By that 
we ought to mean that the characteristic feature of the 
function is an impl icitly enumerable density of singu larities 
with in the scope of some arbitrarily small interval of action 
of a continuing physical process. 

This class of functions is much more than merely very 
important. All l iving processes, if adequately represented, 

Figure 1 
N ICHOLAS OF CUSA'S CIRCLE 

Nicholas of Cusa, in his 1440 book On Learned Igno
rance, showed geometrically that human reason is 
not attainable through mere logical thought. If we 
attempt to approach a circle (reason) through con
struction of polygons with more and more sides (logi
cal thought), it might be thought that we would actu
ally get closer and closer to a circle. Nonsense! A circle 
has no angles; the more angles we add to the polygon, 
the further we are from a circle. 

�

(bJ (S) �. 
(a) 

� � �' (� � I , • • �'B' (d) B 

�' O �J6 
(f) 

Figure 2 
LEAST ACTION: THE ISOPERIMETRIC PRINCIPLE 

About 400 years after Cusa, Jacob Steiner devised the 
following proof that the circle is the figure that en
compasses a maximum area for a given perimeter
also without the use of algebraic axioms. If it is as
sumed that another figure has been discovered that 
has this property, then this figure must at least be 
convex; otherwise, a connecting line could always be 
drawn from A to B that increases the area of the figure 
and decreases the perimeter (a). 

Take an arbitrary figure (b). The first step-if it is 
concave-is to transform it into a convex figure by 
wrapping a string around the figure. This increases 
the area by the amount shown but decreases the pe
rimeter. Therefore, the last step here is to expand the 
figure by a continuous amount along its entire edge 
to bring the perimeter back to its original length. 

The second step is to make the figure symmetrical. 
To do this, divide the perimeter into two parts of equal 
length, AB and BA (for example by measuring the 
perimeter with a string and then folding the string in 
half) (c) . Then the figure can be divided along the 
straight line that joins A and B. Choose the larger of 
two halves (d). Cut the other half out and rotate the 
chosen half 180 degrees from A to B (e) . Then a sym
metrical figure is produced with the perimeter of the 
original figure and possibly with a greater area. If the 
new figure is no longer convex, it can be made so by 
application of the first step. 

Next, fold the resulting figure in half twice (fJ creat
ing the points A, B, C, and D. Join them with straight 
lines. They will form either a square or a rhombus 
parallelogram as shown. If it is a square, we are fin
ished and have transformed the figure into a circle. If 
it is a rhombus, then the area of the figure can be 
increased by "straightening" the rhombus into a 
square, while the perimeter does not change (g) . 

If this procedure is repeated, then the figure will 
get closer and closer to a circle. The circle is the only 
figure whose area cannot be increased in this way. 
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(a) Projection of elliptical cuts through the cylinder and cone 

Projection Projection 
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(b) Transformation produced by cylindrical 
and conical action 

Circle 
Center: f 
Radius: r 
Diameter: d 
Constant curvature 

Ellipse 
Foci: f,. f2 
Perihelion: r, 
Aphelion: r2 
Major axis: d, 
Minor axis: d2 
Inflection points in maxi
mum and minimum curva
ture occur at the end 
points of the major and 
minor axes 

Figure 3 
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(c) Series of self-similar 
expanding circles on a cone 

CONICAL VERSUS CYLIN DRICAL ACTION 

N + 2  r-------::::�� 

The qualitative difference between cylindrical and conical action is seen in the projec
tions of elliptical cuts through the cylinder and cone (a). The cut through'the cylinder 
projects as a circle; that is, cylindrical action does not transform the universe. The 
conic section, however, projects as an ellipse, whose perihelion is the radius of the 
cone's circular cross section at the base of the cut and whose aphelion is the radius of 
the circular cross section at the top of the cut. The ellipse demonstrates the transforma
tions produced by conical action. 

The shift from one to the other is characterized by a transformation from one to two 
Singular characteristics (Singularities) (b). Instead of a center, the ellipse has two foci; 
instead of every radius being of equal length (as in the circle), the ellipse's radii 
vary in length with a minimum (perihelion) and maximum (aphelion); instead of one 
diameter, the ellipse has major and minor axes. 

A self-similar series of expanding circles (c) represents the Riemannian transforma
tion from N to N + 1 .  

are nonl inear processes of  this sort. Additionally, at the 
extremes of scale of astrophysics and m icrophysics, we are 
obliged to adduce anything corresponding to an elemen
tary law of nature from nothing but the cu rvatu re of physical 
space-time. Thus, we know that all tru ly elementary physi
cal functions are of the form of non l inear propositions with
in the terms of reference of the Gauss-Riemann complex 
domain .  I n  the elementary domains of astrophysics, micro
physics, and biophysics, no discrete magnitudes exist self
evidently. They exist in the geometric form of construction 
of singu larities from a continuous man ifold. 

Thus, the derivation of the elementary laws of physics 
from noth ing outside the curvature of physical space-time 
presents us with a notion of the quantization of physical 
space-time. This quantization references the generation of 
d iscreteness as singularities, and also references the har
monic ordering of variable densities of singu larities within  
a defined interval of  action with in  the continuum.  It is only 
in that sense that I reference the subjects of quantization 
of space and of nonlinear functions. Up to a point, the 
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Riemann su rface function appears to be an adequate meth
od of representation of nonlinear processes. This function 
accounts for what must happen in a process to bring about 
restored connectivity fol lowing the earl ier appearance of a 
singu larity. However, this representation is an inadequate 
one, which Riemann's collaborator Beltrami was the fi rst to 
show in  a forcefu l way. 

The problematic issue here is an inadequacy in Di rich let's 
topological principle respecting the manner in which con
nectivity is restored after the generation of a singu larity 
with in  a Gaussian man ifold .  It happens that this flaw in the 
Dirichlet principle is an axiomatic one, and, since the issue 
of method involved Socratic treatment of ax ioma tics, the 
matter is therefore one which is more than merely of great 
interest to me. 

In  physics terminology, the Riemann su rface function 
aids us in representing what has happened in the transition 
from one phase state to the next of a nonlinear process 
(Figu re 4) . This representation is true in respect to what we 
usually reference as weak forces, but is not necessarily true 



Riemannian Geometry, 
Nonlinearity, and 
Negentropy 

Riemann's most significant contribution was to 
prove that the standard mathematical methods used 
in theoretical physics do not work. Riemann's 1859 
paper, "On the Propagation of Plane Air Waves of 
Finite Amplitude," demonstrates how under certain 
conditions an intense s inusoidal air wave wi l l  change 
its form as it moves, transforming itself into a shock 
front across which a discontinuous change of pres
sure occu rs (see Figu re 4) . Up to the point of forma
tion of the shock front, the propagation of the wave 
appears to be adequately described by the usual dif
ferential equations of hydrodynamics. At the forma
tion of the shock front, however, some of the parame
ters of these equations assume infi nite values. The 
processs has assumed new characteristics; a singu lar
ity has been formed. 

Riemann brings out here the fact that the underly
ing processes of the un iverse have the potential to 
fundamentally change their characteristics of action 
through the mediation of singu larities-what appear 
in the discrete, visible manifold as " individuals" (a 
shock wave, for example) . At the same time, new 
potentialities, or degrees of freedom, are opened up 
for further transformation. 

Another example of the same law of the conti nuous 
manifold is revealed in  the fami l iar phase changes in 
matter, l i ke the freezing of water, where the transfor
mation from l iqu id to sol id is accompanied by the 
appearance of a new singularity-type, the water 
crystal .  

The only admissible basis for geometry is the pro
cess by which a manifold of order N is transformed 
into a manifold of order N + 1 .  The subject of geome
try is not a point, nor a l ine, nor a surface, nor a sol id,  
but the process of transformation from point, to l ine, 
to su rface, to solid, and so on. In  other words, Rie
mann saw the proper subject of geometry as negen
tropy. 

-Dr. Jonathan Tennenbaum 

with respect to what we regard relatively as strong forces. 
That is the physics side of the matter, which I leave to the 
ministrations of appropriately qualified col leagues. My ap
proach is a more elementary one. 

With those l imiting considerations, we may say that the 
Riemann surface function represents what has happened 
in such cases, but fai ls to demonstrate how and why that 
result must occur. What is the causal agency associated 
with the existence of a topological singularity we represent 
loosely as a point or hole, which brings about the transfor
mation the Riemann surface function purports to represent 
after the fact? 

(a) Propagation of a nonlinear pressure wave 
-

(2) 

-

(3) 

Shock front
/' 

____ _ 

Figure 4 
SHOCK WAVES AND NONLINEARITY 

As a pressure wave travels through air, it takes the 
shapes in (a). The wave is termed nonlinear because 
the higher pressure area moves forward faster than the 
lower pressure area. It tends to lean forward, similar to 
an ocean wave beginning to break at the beach. In 
this case, however, the wave forms a sharp front that 
has a "shock" effect if it hits an obstacle. 

The formation of a sonic boom wave at the front of 
a jet plane traveling at supersonic speed is shown in 
(b). Moving faster than the speed of sound, the jet 
piles up the air in front of it, creating a pressure situa
tion similar to the shock in (a). 

(b) Formation of sonic boom shock wave 

The solution to this problem can l ie only with in the do
main of the constructive geometry of a mu ltiply connected 
manifold of the Gauss-Riemann sort (Figu res 5-6) . Thus, the 
kernel of the point: If it is the case, as Beltrami indicates, 
that these singu larities are not simply points or holes in 
an otherwise continuously positive curvature, but rather 
regions of negative curvature, and if we were to discover 
that such regions correspond to the notion of strong forces, 
we are then on the track of a solution to this interesting 
problem of ax ioma tics . 

These considerations ought to turn our attention to cer
tain crucial d iscoveries effected during the 15th century, to 
matters bearing upon the complementarity of the tractrix 
and catenary (Figures 7-8) . It appears not only that Brunel
leschi was the fi rst to bring the sign ificance of that to our 
attention, but that the physics of his design for the con-
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Sphere 

Torus 

Pretzel 

Figure 5 
MULTIPLY CONN ECTED SURFACES 

The topology of a sphere has simple connectivity. 
There are no singularities (holes), only poles. The 
torus, with its center hole, is doubly connected and 
a pretzel shape, with two holes, is triply connected. 
LaRouche cites Beltrami's work to offer the hypothe
sis that these singularities are not simply points or 
holes-empty space-in an otherwise continuous 
positive curvature, but rather regions whose physical 
geometry is characterized by negative curvature. Fur
ther, LaRouche suggests that these regions corre
spond to the notion in physics of strong forces. 

struction of the dome of the cathedral of Florence embod
ies the application of certain  physics impl ications of this 
complementarity to appl ied physics. 

The continuation of this l ine of inquiry by Leonardo da 
Vinci , and the outgrowths of that in the later work of such 
as Kepler, Desargues, Leibniz, and Huygens, and such as 
Monge, Poncelet, and Gauss later, assist us greatly in view
ing the internal history of geometrical th inking in modern 
science from this standpoint of reference. 

I make two general points in  conclusion. 
Fi rst, I emphasize that my refutation of Kant's dogmas, 

as represented in sundry publ ished locations, defines the 
kinds of creative mental processes associated with valid 
fundamental d iscoveries with a form of nonlinear process 
in which al l  the problems I have l isted are central features. * 
I have also emphasized , that the rigorous scrutiny of the 
methods of composition employed in great works of strictly 
classical art forms represent, from the axiomatic stand-
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Figure 6 
CURVATURE: N EGATIVE AND POSITIVE 

Curvature is measured by the radius of a circle that 
most approximates a curve (a) . On a surface, the cur
vature is measured by two such circles approximating 
the curvature at the maximum and minimum ex
tremes. These extremes, it turns out, are always per
pendicular. 

The curvature of a surface is positive when these 
two curves lie on the same side of the surface, as in a 
sphere (b) or a torus. On a surface of negative curva
ture the two circles will lie on opposite sides of the 
surface, as in the saddle curve (c) . 

point, d i rectly the same qual ity and form of creative mental 
activity we encounter in the case of a valid fundamental 
d iscovery in physical science. 

The Process of Scientific Discovery 
From this vantage point, and the methodological vantage 

point of Cusa's De Docta Ignorantia, the essence of science 



(a) Catenary 

(b) Tractrix (involute of catenary) 

Figure 7 
THE CATENARY AND THE TRACTRIX 

The catenary is the form assumed by a chain or rope suspended from two fixed points and hanging under its own 
weight (a). Th e surfaces between the ribs of Brunelleschi's dome are families of catenaries. 

To find the involute of a catenary (or of any curve), imagine a thread on the surface of the curve, which is then 
cut and unwound from the lowest point on th e curve A to the left and the right. The ends of the thread on a catenary 
rope trace out the tractrix (heavy line). Each step of the unwinding is like constructing a tangent of th e catenary to 
the tractrix. If the normal (perpendicular) is drawn to the tangent of the tractrix at any point, it can be seen that this 
normal becomes a tangent to the catenary. Note that all tangents from the inside of th e tractrix to its base are equal 
in length. 

. 

is not particu lar knowledge, which is always h istorically 
ephemeral in its authority, but rather the process of perfec
tion of the mental powers developed for the work of scien
tific discovery. In other words, relative to the notions of 
finiteness associated with formal analysis of the discrete 
manifold, the active principle of scientifi<;: progress is not 
deductive, but is a transfinite impl icitly representable by 
the kind of nonli near process indicated. 

Hence, in deal ing with the axiomatic issues of science, 
we must adopt the appropriate h istorical approach to the 
internal history of science. We must reexamine the branch
ing points in the internal h istory of science, at which certain 
axiomatic sorts of ontological assumptions were adopted, 
and must reexamine the h istorical issues so posed in terms 
of reference to new qual ities of experimental evidence 
presently confronting us.  

Thus, by rel iving the mental experience associated with 
the most crucial d iscoveries of a past reaching not too infre
quently into 15th-centu ry Italy, we clear confusion from our 
minds, and approach present-day questions in  a fresh way. 

Thus, always, when "'Ie honor the best contributions of 
the past, we strengthen the means for solving important 
tasks of the present. 

Figure 8 
BELTRAMI AND SURFACES OF CONSTANT 

NEGATIVE CU RVATURE 
Eugenio Beltrami, the Italian collaborator of Riemann, 
explored the properties of a pseudosphere, a figure 
whose surfaces have constant negative curvature. The 
pseudosphere is generated by rotating a tractrix. 

Lyndon LaRouche, an economist and controversial politi
cal figure, frequently writes on the important scientific tasks 
of the present. 

Notess----------------------

• For example, see "Designing Cities in the Age of Mars Colonization," 21st 
Century, Nov.-Dec. 1 988, pp. 26-48. 
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