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For the complete determination of the Earth's magnetic force at a given location, three
elements are necessary: the deviation (declination) or the angle between the planes, in which
it acts, and the meridian plane; the inclination of the direction of the horizontal plane; finally,
third, the strength (intensity). The declination, which is to be considered as the most important
element in all applications to navigation and geodesy, has engaged astronomers and physicists
from the beginning, who for a century, however, have given their constant attention to the
inclination as well. In contrast, the third element, the intensity of the terrestrial magnetic
force, which is surely just as worthy a subject of science, remained fully neglected until more
recent times. Humboldt rendered the service, among so many others, of having been first to
direct his attention to this subject, and in his travels assembled a large array of determinations
concerning the relative strength of magnetism, which yielded the result of a continuous
increase in this strength from the magnetic equator toward the pole. A great many physicists
have trod in the footsteps of that great natural scientist, and have already brought together
such a large array of determinations, that Hansteen, highly distinguished for his knowledge of
terrestrial magnetism, has recently been able to publish a comprehensive isodynamic map.

The method applied in all these investigations consists of observing either the length
of time it takes for one and the same magnetized needle to perform the same number of
oscillations at different locations, or the number of oscillations of the same needle within the
same time period, and the strength is assumed to be proportional to the square of the number
of oscillations in a given length of time: in this way all the intensities are compared with one
another, when an inclination-needle, suspended at the center of gravity, oscillates on a
horizontal axis perpendicular to the magnetic meridian, or the horizontal components, when a
horizontal needle swings on a vertical axis. The latter mode of observation leads to greater
precision, and the results emerging from it can, after ascertaining the inclination, easily be
related to the total intensities.

It is evident that the reliability of this procedure depends on the assumption, that the
distribution of free magnetism in the particles of the needle used in this comparison remains
unchanged during the individual experiments; that is, if the magnetic force of the needle had



undergone any sort of weakening in the course of time, it would subsequently oscillate more
slowly, and the observer, who has no knowledge of such an alteration, would attribute too low
a value to the strength of the terrestrial magnetism for the subsequent location. If the
experiments span only a moderate period of time and a needle manufactured of well-
tempered steel and carefully magnetized is used, a significant weakening of the force is not
especially to be feared; moreover, the uncertainty will be still further decreased, if several
needles are employed for comparison; finally, this assumption will be relied upon more
confidently, if it is found, after returning to the first location, that the duration of the needle's
oscillation has not changed. Yet whatever precautions may be taken, a slow weakening of the
force of the needle can scarcely be prevented, and thus such conformity after a longer absence
can seldom be expected. Therefore, in comparing intensities for widely distant locations on
the Earth, precision of the degree we must desire cannot be attained.

After all, this disadvantage in the method is less consequential, so long as it is only a
matter of comparison of simultaneous intensities or intensities corresponding to time periods
not remote from one another. But because experience has taught us, that both the declination
and inclination undergo continuous changes at a given location, it cannot be doubted, that the
intensity of terrestrial magnetism is subject to analogous secular changes, as it were. It is
evident that, as soon as this question arises, the method described above loses all utility. And
yet it would be extraordinarily desirable for the progress of science, that this highly important
question be fully settled, which certainly cannot occur, if another method does not replace that
purely comparative one, and the intensity of the Earth's magnetism is not reduced to fixed
units and absolute measurement.

It is not difficult, to specify the fundamental theoretical principles, on which such a
long-desired method must be based. The number of oscillations, which a needle carries out in
a given length of time, depends on the intensity of the Earth's magnetism, as well as the state
of the needle, namely on the static moments of the elements contained in it and on its inertial
moment. Because this inertial moment can be ascertained without difficulty, it is evident that
observation of the oscillations would provide us with the product of the intensity of the
Earth's magnetism into the static moment of the needle's magnetism: but these two
magnitudes cannot be separated, if observations of another kind are not made in addition,
which yield a different relationship between them. This goal can be attained, if a second
needle is added as an auxiliary and is exposed to the influence of the Earth's magnetism and
of the first needle, in order to ascertain the relation of these two forces to each other. Each of
the two effects will of course depend on the distribution of the free magnetism in the second
needle: but the second will further depend on the state of the first needle, the distance between
the midpoints, the position of the straight lines connecting their midpoints, and finally on the
laws of magnetic attraction and repulsion. Tobias Mayer had been the first to advance the
suggestion, that this law accords with the law of gravitation, insofar as those effects also
decrease by the square of the distance: the experiments by Coulomb and Hansteen have given
this suggestion great plausibility, and the latest experiments elevate it beyond any doubt. But
it is well to consider, that this law refers only to the individual elements of free magnetism;
the total effect of a magnetic body will be completely different, and, given very great
distances, as can be deduced from just that law, will be very nearly proportional to the inverse
relationship of the cube of the distance, so that, other conditions being equal, the action of the
needle multiplied by the cube of the distance, given ever-increasing distances, approaches a
definite limit. This limiting value, as soon as a definite length is taken as the unit, and the
distances are expressed numerically, will be of the same type for the effect of the Earth's force
and comparable with it.



By means of experiments appropriately constructed and performed, the limiting value
of this relationship can be determined. Since the limit contains only the static moment of the
magnetism of the first needle, then the quotient of this moment divided by the intensity of the
terrestrial magnetism will be obtained; if they are now compared with the already ascertained
product of these magnitudes, it will serve to eliminate this static moment, and will yield the
value of the intensity of the terrestrial magnetism.

With regard to the possible ways to test the effects of terrestrial magnetism and of the
first needle on the second needle, a twofold path is open, since the second needle can be
observed either in a state of motion or in a state of equilibrium. The first method consists of
observing this second needle's oscillations, while the effect of the terrestrial magnetism is
associated with the action of the first needle. This first needle must be set up at a suitable
distance such that its axis lies in the magnetic meridian going through the midpoint of the
oscillating needle: thereby the oscillations are either accelerated or retarded, according to
whether unlike or like poles are turned toward each other, and the comparison of either the
oscillation times for each of the two positions of the first needle with each other, or the
oscillation time of one of the two positions with the oscillation time which (after the
distancing of the first needle) takes place under the exclusive effect of the Earth's magnetism,
will show us the relation of this force to the effect of the first needle. In the second method,
the first needle is placed so that the direction of its force, which it exerts on the location of the
second, freely suspended, needle, forms an angle (for example, a right angle) with the
magnetic meridian; by this means the second needle itself will be deflected out of the
magnetic meridian, and from the magnitude of the deviation, one can infer the relation
between the terrestrial magnetic force and the influence of the first needle.

By the way, the first method essentially coincides with that proposed some years ago
by Poisson. But the experiments carried out by certain physicists according to this
formulation, at least so far as I know, either totally miscarried, or can at most be considered
imperfect approximations.

The actual difficulty lies in the fact that from the observed influences of the needle at
moderate distances, a limit must be calculated, which bases itself on, in a sense, an infinitely
great distance, and that the eliminations necessary for this purpose are all the more disturbed
by the smallest errors in observation, indeed rendered totally useless, the more that unknown
[quantities], which depend on the specific condition of the needle, must be eliminated: the
calculation can only be reduced to a small number of unknowns, however, when the
influences occur at distances, which in relation to the length of the needle become rather
large, and therefore they themselves become very small. Yet, in order to measure such small
influences the practical expedients employed up to now are insufficient.

I recognized, that I had to turn my efforts above all toward discovering new
expedients, whereby the alignments of the needle could be observed and measured with far
greater precision than before. The labors undertaken to this purpose, which were pursued for
several months, and in which I was assisted by Weber in many ways, have led to the desired
goal, to the extent that they not only did not disappoint expectations, but far exceeded them;
and that nothing more remains to be desired, in order to make the precision of the experiments
equivalent to the acuteness of astronomical observations, but a site fully protected from the
influence of nearby iron and air currents. Two pieces of equipment were put at our disposal,
which are distinguished no less by their simplicity than by the precision they afford. I must
reserve their description for another time, while I submit to the physicists in the following



treatise the experiments carried out to date in our observatory toward determining terrestrial
magnetic intensity.

1.

To explain magnetic phenomena, we assume two magnetic fluxes: one we call north,
the other south. We presuppose, that the elements of the one flux attract those of the other,
and that on the other hand, two elements of the same flux mutually repel each other, and that
each of the two effects alters in inverse relation to the square of the distance. It will be shown
below that the correctness of this law was itself confirmed by our observations.

These fluxes do not occur independently, but only in association with the ponderable
particles of such bodies which take on magnetism, and their effects express themselves either
when they put the bodies into motion or they prevent or transform the motion, which other
forces acting on these bodies, e.g. the force of gravity, would elicit.

Hence the effect of a given amount of magnetic flux on a
given amount of either the same or the opposite flux at a
given distance is comparable to a given motive force, i.e.
with the effect of a given accelerating force on a given mass,
and since the magnetic fluxes themselves can be known only through the effects, which they
bring forth, the latter must directly serve to measure the former.

In order, however, that we may be able to reduce this measurement to definite
concepts, units must above all be established for three kinds of magnitudes, namely, the unit
of distance, the unit of ponderable mass, and the unit of acceleration. For the third, the force
of gravity at the locus of observation can be assumed: if, however, this is not suitable, the unit
of time must also enter in, and for us that acceleration will be = 1, which, within the time unit,
produces a change of velocity of the body in the direction of its motion, which is equivalent to
the unit.

Correspondingly, the unit of the amount of north flux will be that whose repulsive
effect on another like it, and whose existing amount of motive force in the unit of distance =
1, i.e. the effect of an accelerating force = 1 on a mass = 1; the same will be true of a unit of
the amount of south flux; in this definition, clearly the active flux, as well as that of the effect,
must be thought of as, at bottom, united in physical points. Beyond this, however, it must be
assumed, that the attraction between given quantities of different kinds of fluxes at a given
distance is equal to the repulsion between the same respective quantities of the same kind of
flux. Hence the effect of a quantity m of north magnetic flux on a quantity m' of the same flux
at distance r (each of the two fluxes being assumed to be united as at one point) will be

expressed as 
rr

mm'
, or it is equivalent to a motive force 

rr

mm'= , which acts in the direction of

the first against the second flux, and evidently this formula holds true in general, when, as
from now on we wish to stipulate, a quantity of southern flux will be considered as negative,
and a negative value of the force will signify attraction.

Hence if equal quantities of north and south flux are found simultaneously at one
physical point, no effect at all will arise; if, however, the amounts are unequal, only the
remainder/excess of the one which we wish to term free magnetism (positive or negative) will
come under consideration.



2.

To these fundamental presumptions we must add still another, which is confirmed at
all times by experience, namely, that every body, in which magnetic flux occurs, always
contains an equal amount of each of the two. Experience even shows that this assumption is to
be extended to the smallest particle of such a body, which can still be differentiated by our
senses. Yet, according to what we have emphasized at the end of the preceding section, an
effect can only be present insofar as some separation of the flux takes place, so that we must
necessarily assume, that this occurs through such small intersticess, that they are inaccessible
to our measurements.

A magnetizable body must thus be conceived of as the union of innumerable particles,
of which each contains a certain quantity of north magnetic flux and an equally large amount
of south, specifically, so that they are either homogeneously mixed together (the magnetism is
latent), or have undergone a lesser or greater separation (the magnetism is developed), a
separation, however, which can never involve an overflow of flux from one particle to
another. It makes no difference, whether one assumes, that a greater separation originates
from a greater amount of freed-up flux or from a greater gap between them: it is evident,
though, that, in addition to the size of the separation, its directionality must come into
consideration at the same time, for it is according to whether or not this is in conformity in the
different particles of the body, that a greater or lesser total effect can arise respecting the
points outside the body.

Yet, however the distribution of free magnetism within the body may behave, one can
always insert in its place, as a result of a general theorem, according to a specific law, a
different distribution on the surface of the body, which exerts fully the same outward force as
the first distribution, so that an element of magnetic flux situated anywhere on the outside
experiences exactly the same attraction or repulsion from the actual distribution of magnetism
inside the body, as from the distribution thought of as on its surface*. The same fiction can be
extended to two bodies, which, according to the proportion of the free magnetism developed
in them, act upon each other, so that for each of them the distribution thought of as on the
surface can replace the actual internal distribution. In this way we can finally give its true
meaning to the common mode of speech, which, e.g., ascribes exclusively north magnetism to
the one end of a magnetized needle, and south magnetism to the other, since it is evident that
this turn of phrase is not in harmony with the principle enunciated above, which is
unconditionally demanded by other phenomena. But it may suffice to have noted this in
passing; we will discuss the principle itself more fully on another occasion, since it is not
required for present purposes.

3.

The magnetic state of a body consists in the relation of the distribution of free
magnetism in its individual particles. With regard to the variability of this state, we perceive
an essential difference between the different magnetizable bodies. In some, e.g. in soft iron,
that state changes immediately as a result of the slightest force, and if this force ceases,
returns to its previous state: in contrast, in others, especially tempered steel, the force must
have attained a certain strength, before it can elicit a perceptible change in the magnetic state,
and if the force ceases, either the body remains in the transformed state, or at least it does not

                                                            
* Cf. Gauss, General Principles..., section 36. Works, vol. V, p. 240 (also Ostwald's Classics,
No. 2, p. 49).



fully return to the previous one. Hence, in bodies of the first kind, the magnetic molecules
order themselves in such a way that, between the magnetic forces, which originate partly from
the bodies themselves, partly from external sources, a complete equilibrium exists, or at least
the state differentiates itself barely noticeably from that just described. In bodies of the second
kind, in contrast, the magnetic state can be lasting/constant even without complete
equilibrium between those forces, provided that stronger external forces remain distant. Even
if the source of this phenomenon is unknown, it can nevertheless be represented, as if the
ponderable parts of a body of the second kind counterpose to the movement of the magnetic
fluxes associated with it an obstacle akin to friction, a resistance, which in soft iron either
does not exist at all or is only very slight.

In theoretical investigation, these two cases require a completely different treatment;
but in the present treatise, only bodies of the second kind will be spoken of: in the
experiments we want to talk about, the unchangeability of the state in the individual bodies
will be a fundamental assumption, and hence one must be on guard during the time that the
experiments bring other bodies, which could alter this state, into too close proximity.

Yet a certain source of change is at hand, to which the bodies of the second kind are
also subjected, namely, heat. Experience indubitably teaches us that the magnetic state of a
body changes with its temperature, yet in such a way that, if the body is not immoderately
heated, it returns to its former magnetic state when its former temperature returns. This
function is to be determined by means of suitable experiments, and if observations at different
temperatures are undertaken as part of an experiment, they will be above all reducible to one
and the same temperature.

4.

Independently of the magnetic forces, which we see sufficiently proximate individual
bodies exert upon each other, another force acts upon the magnetic fluxes, which, since it
manifests itself everywhere on Earth, we ascribe to the globe itself, and hence we term it
terrestrial (Earth) magnetism. This force expresses itself in a dual way: bodies of the second
kind, in which magnetism is induced, are, if supported at the center of gravity, turned toward
a definite direction: in bodies of the first kind, in contrast, the magnetic fluxes are
automatically separated by that force, a division which can be made very noticeable, if one
chooses bodies of appropriate shape and puts them in an appropriate location. Each of the two
phenomena will be explained by the interpretation, that at any arbitrary locus, that force
drives the north magnetic flux in a definite direction, and drives the south magnetic flux, on
the other hand, with equal strength in the opposite direction. The direction of the former is
always understood, if we speak of the direction of terrestrial magnetism; hence it will be
determined both by the inclination to the horizontal plane as by the deviation from the
meridian plane of the vertical plane in which it acts; the former is called the magnetic
meridian plane. The intensity of terrestrial magnetism, however, is to be measured by the
motive force which it exerts on the unit of the free magnetic flux.

This force is not only different at different spots on the Earth, but also changeable at
the same spot, in the course of centuries and years, as well as in the course of decades and
hours. This changeability has indeed long been known with regard to direction; but with
regard to intensity, until now it has only been possible to observe it in the course of the hours
of one day, since we had no experimental device designed for longer periods of time. The
reduction of the intensity to absolute measurement will in future provide remedies for this
deficiency.



5.

In order to subject the effect of terrestrial magnetism on magnetic bodies of the second
kind (from now on, those are always the kind to consider) to calculation, such a body is
conceived of as divided into infinitely small parts; let dm be the element of free magnetism in
a particle, whose coordinates in relation to three fixed planes, perpendicular to each other, in
the body, may be designated x, y, z: the elements of the south flux we take to be negative.
Then it is clear, first of all, that the integral taken for the entire body (even for every
measurable part of the body), is = 0dm . We wish to further specify = Xxdm , = Yydm

and = Zzdm , which magnitudes may designate the moments of free magnetism in relation

to the three orthogonal-planes or in relation to the axis perpendicular to them. Since under the
assumption, that a refers to an arbitrary constant magnitude, − dmax )(  will be X= , it is

evident, that the moment in relation to a given axis depends only on its direction, but not on
its origin. If we draw a fourth axis through the origin of the coordinates, which forms with it
the angle A, B, C, the moment of the elements dm  in relation to this axis will be

dmCzByAx )coscoscos( ++= , and further the moment of free magnetism in the body as a
whole

VCZBYAX =++= coscoscos .

 If we assume MZZYYXX =++ )(  and αcosMX = ; βcosMY = ; γcosMZ = , and

draw a fifth axis, which forms the angle γβα  , ,  with the first three axes, and with the fourth
the angle ω ,  then, since as a consequence of these assumptions

γβαω coscoscoscoscoscoscos CBA ++= , V will be ωcosM= . We call this fifth axis
simply the <magnetic axis> of the body, and we assume that its <direction> is part of the
positive value of the root )( ZZYYXX ++ . If the fourth axis coincides with this magnetic

axis, the moment becomes V = M, which is clearly the greatest of all moments: the moment in
relation to an arbitrary other axis is found, by multiplying this greatest moment (which, so that
ambiguity need not be feared, can simply be called the moment of magnetism) with the cosine
of the angle between it and the magnetic axis. The moment in relation to an arbitrary axis
perpendicular to the magnetic axis will = 0, but will be negative in relation to that axis which
forms an obtuse angle with the magnetic axis.

6.

If a force of constant intensity and direction acts on the individual particles of the
magnetic flux, the total resultant force on the body can easily be inferred from principles of
statics, since in the bodies under consideration these particles have lost their state of flux to
some extent, and form a fixed mass with the ponderable body. On an arbitrary magnetic
particle dm the motive force = Pdm may act in a direction D (where for the molecule of south
flux the negative sign as such signifies the opposite direction); let A and B be two points on
the body lying in the direction of the magnetic axis, and their distance = r, positively taken,
when the magnetic axis is directed from A toward B: then one easily sees, that if two new

forces are added to these forces, each 
r

PM= , of which the one acts on A in direction D, the

other on B in the opposite direction, there will be an equilibrium among all these forces.

Therefore the former forces will be equivalent to two forces 
r

PM= , of which one acts on B in



direction D, the other on A in the opposite direction, and clearly these two forces cannot be
united into one.

If, in addition to force P, another similar force P' acts in direction D' on the magnetic
fluxes of the body, then they can be replaced by two others, which act either on the same
points A and B or more generally on other points A' and B', provided only that A'B' is likewise

a magnetic axis, and, if the distance is made A'B' = r', these forces must of course 
'

'

r

MP= ,

and must act on B' in direction D‘, on A' in the opposite direction. The same holds true of
several forces.

To the terrestrial magnetic force can safely be ascribed, within a such a small space as
that occupied by the body subjected to the experiment, an intensity and direction that are
everywhere constant, though variable with time; thus, what we have just said can be applied
to it [the terrestrial magnetic force]. However, it can be advantageous, to separate it right at
the outset into two forces, a horizontal = T and a vertical = T', which in our situation is
directed downward. Since, in case one wants to use for the latter two others acting on points
A' and B', it is permissible to arbitrarily posit point A' and also the interval A'B' = r', we want
to choose A' for the center of gravity, and, denoting by p the weight of the body, i.e. the

motive force of gravity on its mass, we say that '
'

r
p

MT = . Hereby the effect of force T' is

released into a force = p directed upward on A', and into another of the same magnitude
directed downward on B', and since further the former is clearly cancelled by the force of
gravity itself, the effect of the vertical component is simply reduced to the transfer of the
center of gravity from A' to B'. Moreover, it is clear, that for those situations, where the
terrestrial magnetic force forms an acute angle with the vertical force, or, in other words,
where its vertical part pushes the magnetic north-fluid upward, a similar shift of the center of
gravity occurs from the magnetic axis to the south pole.

In this way of thinking, it is self-evident that, whatever sort of experiments may be
conducted with a magnetized needle in a single magnetic state, it is impossible to infer the
inclination from this alone, but the locus of the actual center of gravity must already be known
by some other means. This locus is ordinarily determined before the needle is magnetized; but
this practice is not reliable enough, since as a rule a steel needle already takes on magnetism,
though weakly, while it is being manufactured. It is therefore necessary for the determination
of inclination to induce another shift of the center of gravity by means of an appropriate
alteration in the magnetic state of the needle. In order that this differ as much as possible from
the first, it will be necessary to reverse the poles, by means of which a double shift is
obtained. However, shifting the center of gravity even in needles which have the most suitable
form and are saturated with magnetism, cannot exceed a certain limit, which equals roughly
0.4 mm, and in situations, where the vertical force is at its greatest, an as great mechanical
fineness is required in the needle that is to serve to determine the inclination.

7.

When any point C of a magnetic body is assumed to be fixed, the necessary and
sufficient condition for equilibrium, is that a plane laid through C, the center of gravity and
the magnetic axis coincides with the magnetic meridian, and that, moreover, the moments,
with which the terrestrial magnetic force and the center of gravity seek to rotate around point
C, cancel each other: the second condition proceeds from the fact that, if T denotes the
horizontal part of the terrestrial magnetic force and i the inclination of the magnetic axis



toward the horizontal plane, iTM sin  is the product of the weight of the body at the distance
of the displaced center of gravity B' of the vertical line drawn through C: clearly this distance
must lie on the north or south side, according to whether i is an elevation or depression, and
for i = 0, B' lies in this vertical line itself. If the body is already moved around this vertical
line so that the magnetic axis reaches into the vertical plane, whose magnetic azimuth, i.e. its
angle with the northerly part of the magnetic meridian (arbitrarily taken as positive toward
east or toward west) = u, then the terrestrial magnetism will exert a force on the body
revolving around the vertical axis, which strives to decrease the angle u and whose moment
will be uiTM sincos= , and the body will perform oscillations around this axis, whose
duration can be calculated according to known methods. Namely, if K denotes the inertial
momentum of the body in relation to the axis of oscillation (i.e., the sum of the ponderable
molecules multiplied by the square of the distance from the axis), and, as usual, denotes as π
the half-circumference for radius = 1, then the duration of an infinitely small oscillation will
be

iTM
K
cos

π=

namely, in the case that it is based upon the magnitudes T and M as unit of the accelerating
force, which in the time-unit produces the velocity = 1: the reduction of finite oscillations to
infinitely small ones will be calculable in a similar way for the oscillations of the pendulum.
Hence, if the duration of <one> infinitely small oscillation is found from observation to = t,

we will have the equation: 
itt

K
TM

cos

ππ= , and when, moreover, as we always assume from

now on, the body is suspended in such a way that the magnetic axis is horizontal:

tt

K
TM

ππ= .

If one would rather assume gravity as unit of the accelerating forces, one must divide that
value by l ππ , where l denotes the length of the simple second-pendulum, so that altogether

one would have: 
iltt

K
TM

cos 
=  or for our case 

ltt

K
TM

 
= .

8.

When these sorts of experiment are performed on magnetized needles, suspended by a
vertical thread, then the reaction, which is exerted by the torsion, cannot be neglected in more
refined experiments. We want to identify two horizontal diameters in such a thread, the one,
D, at the lower end, where the needle is attached, parallel to the magnetic axis of the needle,
the other, E, at the upper end, where the thread is secured, and in fact E would be parallel with
D if the thread were not twisted. We want to assume, that E forms the angle v with the
magnetic meridian, while D, or the magnetic axis, forms the angle u with the meridian; then,
experience shows that the torsion will be proportional, at least approximating the angle v - u:
hence we will posit the moment, with which this force seeks to make angle u equal to angle v,
as Θ−= )( uv . Since the moment of terrestrial magnetic force, which strives to decrease angle
u , is now uTM sin= , the condition for equilibrium is contained in the equation:

uTMuv sin)( =Θ− , which allows for more real solutions, the smaller Θ  is in comparison
with TM: however, so long as only small values of u are dealt with, instead of this equation

one can safely take the following one: TMuuv =Θ− )(  or 1+
Θ

= TM

u

v
. In our apparatus, the

upper end of the thread is fastened to a movable arm, which holds an indicator playing on the
periphery of a circle divided into degrees. Hence even if the collimation error (i.e,, the point



corresponding to the value v = 0) is still not known with sufficient precision, nevertheless this
pointer indicates the difference for each second value from v on: just as another part of the
apparatus provides the difference between the values of u, corresponding to the equilibrium

condition, with the greatest precision, and it is clear, that the value of 1+
Θ

TM
 will be

obtained from the division of the difference between two values of v by the difference
between the corresponding values of u. If there is a somewhat longer period of time between
the experiments conducted for this purpose, it will be necessary, in order to achieve the
utmost precision, to take note of the daily change in the magnetic declination, which is easily
accomplished with the help of simultaneous observations on a second apparatus, in which the
upper end of the thread remains unaffected: it is hardly necessary to recall, that the distance
between the two apparatus must be large enough, so that they cannot significantly interfere
with each other.

In order to show how great a refinement these sorts of observations permit, we
introduce an example from the daily log book. On September 22, 1832, pending the
collimation error, the following declinations u and angle v*) were observed:

First Needle Second NeedleExperiment Time
u v u

I 9h 33‘ Vm +0° 4‘ 19.5‘‘ 300° +0° 2‘ 12.1‘‘
II 9h 57‘ -0° 0‘ 19.6‘‘ 240° +0° 1‘ 37.7‘‘
III 10h 16‘ -0° 4‘ 40.5‘‘ 180 +0° 1‘ 18.8‘‘

Hence the declinations of the first needle, related to the position of the first
observation, are as follows:

I u = 0° 4‘ 19.5‘‘ v = 300°
II +0° 0‘ 14.8‘‘ 240°
III -0° 3‘ 47.2‘‘ 180°

From this emerges the value of the fraction 
Θ

TM
 from the combination of observations

 I and II ............ 881.7
 II and III .......... 891.5
 I and III ........... 886.6

The daily changes in the magnetic declination are decreased by the torsion in the

proportion of unity to 
1+n

n
 where 

Θ
TM

 is set = n, a change which, if we use threads of such

low torsion as the foregoing example shows, can be considered as insignificant. So far as the
duration of the (infinitely small) oscillations, it can easily be concluded from the dynamic

principles, that it is decreased by the torsion in proportion of unity to 
1+n

n
. Actually, this

relates to the case where v = 0. The formulas would hold true, however, in general, if we

                                                            
*) Both elements expand from left to right.



posited n
uTM =

Θ
ϒcos

 wherein we denote the value of ϒu  by u, which corresponds to the

equilibrium: but the difference will certainly be insignificant.

9.

The coefficient Θ  depends essentially on the length, the thickness, and the material of
the thread, and additionally in metallic threads on the temperature, in satin threads on the
humidity: in contrast, it seems to depend not at all, in the former case (perhaps also in the
latter, if they are single threads) on the weight they bear. The situation is different when the
satin threads are multiplex, as they must be to hold heavy needles: in this case theta increases
with the suspended weight, yet it remains far smaller than the value of Θ  for a metallic thread
of exactly the same length and load capacity. Thus, through a very similar method to that
developed in the previous section (although with a different thread and a different needle), the
value of n = 597.4 is found, while the thread holds a needle with the usual equipment alone,
where the total weight was 496.2 g; in contrast = 424.8, when the weight was increased to
710.8 g, or in the first case it was TM0016740.0=Θ , in the second case TM0023542.0=Θ .
The thread, whose length was 800 mm, is composed of 32 individual threads,** which
individually hold almost 30 g securely and are arranged so that they undergo an equal tension.
Moreover, it is probable, that the value of Θ  consists of a constant element and an element
proportional to the weight, and that the constant part will equal the sum of the values of Θ  for
the individual simple threads. Under this hypothesis (which as of now is not adequately
substantiated by experiments), 0.0001012 TM is found as the constant value for the example
above, and thus 0.00000316 TM as the value of Θ  for a simple thread. With recourse to the
soon to develop value of TM, it will be calculated from this hypothesis, that the resistance of a
single thread, wound around a curve equal to the radius (57° 18'), is equivalent to the gravity
of a milligram pressing on the arm of a lever with the length of approximately 1/17 mm.

10.

If the oscillating body is a simple needle of regular form and homogeneous mass, the
inertial momentum K can be calculated according to known methods. If, e.g., the body is a
right-angled parallelopiped, whose sides are a, b, c, whose thickness = d and whose mass is q,
thus = abcd, the inertial momentum will be in relation to an axis going through the midpoint

and parallel to side qbbaac )(
12

1 += : and since in magnetic needles of such a shape, the side

which is parallel to the magnetic axis, namely a, is usually far longer than b, it will, moreover,

suffice for crude experiments to make aaqK
12

1= . But in more refined experiments, even if a

simple needle is used, we would hardly be allowed the comfortable assumption of a
completely homogeneous mass and a completely regular shape, and for those of our
experiments in which, not a simple needle, but a needle involving more complex equipment, it
is altogether impossible, to ascertain the state of affairs through such a calculation, and a
different procedure was sought for the precise determination of the moment K.

To the needle was attached a wooden crossbeam, on which two equal weights hung,
by means of which very fine spikes exerted pressure on points A and B of the beam: these
points were on a horizontal straight line, in the same vertical plane as the axis of suspension,
                                                            
** Strictly speaking, these threads are not really simple, but merely the kind that are sold as un-
spun.



and were equidistant from it on both sides. If the mass of each of the two weights is denoted
by p and the distance AB by 2r, then by adding this apparatus the momentum K will be
increased by the magnitude C + 2prr, where C is the sum of the momentum of the beam in
relation to the axis of suspension, and the momentum of the weights in relation to the vertical
axis through the spikes and the center of gravity. Hence, if the oscillations of the un-weighted
needle and the needle weighted at two different distances, are observed, namely, for r = r' and
r = r'', and the duration of oscillations (after they are reduced to infinitely small amplitudes
and freed from the effect of torsion) respectively = t, t', t'', are found, then from combining
the equations:

KTMtt ππ=
)''2('' rprCKtTMt ++= ππ

)''''2('''' rprCKtTMt ++= ππ

the three unknowns TM, K and C can be determined. We will attain still greater precision, if,
for several values of r, namely r = r', r'', r''' and so forth, we observe the associated duration
of oscillations t', t'', t''', and so forth, and, according to the method of least squares, determine
the two unknowns x and y such that

x
yrr

t
+= ''

'

x
yrr

t
+= ''''

''

x
yrr

t
+= ''''''

'''

and so forth.

By this means we obtain:

pxTM ππ2=
.2 pyCK =+

Regarding this method, the following is to be observed:

I. If a not too smooth needle is used, it suffices, to simply place the wooden beam on
it. If, however, the surface is very smooth, so that friction cannot retard the sliding of the
beam, it is necessary, so that the whole apparatus may move like a single fixed body, to
connect the beam more securely to the rest of the apparatus. In both cases, care should be
taken, that points A and B are located with sufficient precision in a horizontal straight line.

II. Since the ensemble of such experiments requires several hours, the variability of the
terrestrial magnetism within this time span, at least if the greatest precision is desired, cannot
be neglected. Hence, before the elimination is undertaken, the observed times must be
reduced to a constant value of T, e.g. to the mean value, corresponding to the first experiment.
For this purpose, simultaneous observations of another needle (just as in Section 8) are
necessary: if these observations have as the duration of <one> oscillation for the mean time of
the single experiment respectively = u, u', u'', u''' and so forth, then instead of using the



observed values t, t', t'', t''' and so forth for the calculation, and 
'''

'''
 ,

''

''
 ,

'

'

u

ut

u

ut

u

ut
, so forth

respectively are used.

III. A similar comment holds true with regard to the variability of M, which comes
from the change in temperature, if that occurs during the experiment. But it is clear that the
just-described reduction already includes this improvement in and of itself, if each of the two
needles is subject to the same temperature, and is influenced in the same way by such a
change.

IV. If the task is only to ascertain the value of TM, clearly the first experiment is
superfluous. Yet it will be useful to conjoin to the experiment conducted with a weighted
needle another with an un-weighted needle, in order for the value of K to be obtained at the
same time, so that it can be taken as a base for these experiments which are performed at
another time with the same needle, since it is evident that this value remains constant, even
when T and M undergo a change over time.

11.

To better explain this method, we include here an example from the large quantity of
applications. The experiment conducted on September 11, 1832 yielded the following table:

Simultaneous oscillationsExperiment
of the first needle of the second needle

Load One oscillation One oscillation
I r = 180mm 24.63956‘‘ 17.32191‘‘
II r = 130mm 20.77576‘‘ 17.32051‘‘
III r = 80mm 17.66798‘‘ 17.31653‘‘
IV r = 30mm 15.80310‘‘ 17.30529‘‘
V Without load 15.22990‘‘ 17.31107‘‘

Times were observed on a clock which every day lost 14.24" mean time, and each of
the two weights weighed 103.2572 g; the distances r in milimeters were determined with
microscopic precision; the duration of an oscillation, which was ascertained from at least 100
oscillations (in the fifth experiment, even from 677 for the first needle), had already been
reduced to infinitely small curves: moreover, these reductions were insignificant, because of
the very small amplitude of the oscillations**) which it is possible to apply to our apparatus
without detriment to the greatest precision. We wanted to reduce these oscillation times, first
to the mean value of TM, which took place during the fifth experiment, under application of
the rules in section II above; then to the values, which would have resulted without torsion,

through multiplication by 
n

n 1+
 where n in the four first experiments = 424.8, in the fifth

experiment = 597.4 (cf. section 9); finally to the mean solar time through multiplication by

76.86385

00.864
; our results were:

                                                            
**) Thus the amplitude of the oscillations in the first experiment was 0° 37' 26" at the
beginning, 0° 28'34" at the end; in the fifth experiment 1° 10‘ 21‘‘ at the beginning, after 177
oscillations 0° 45‘ 35‘‘, and after 677 oscillations 0° 6‘ 44‘‘.



I. 24.65717‘‘ = t‘ for r‘ = 180mm
II. 20.79228‘‘ = t‘‘ for r‘‘ = 130mm
III. 17.68610‘‘ = t‘‘‘ for r‘‘‘ = 80mm

IV. 15.82958‘‘ = t‘‘‘‘ for r‘‘‘‘ = 30mm
V. 15.24515‘‘ = t for the unloaded needle.

If we take the second, the millimeter and the milligram for the units of time, distance
and mass, so that p = 103257.2, we infer from combining the first experiment with the fourth:

 TM = 179,641,070; K + C = 4,374,976,000

 and then from the fifth experiment

 K = 4,230,282,000 and likewise C = 144,694,000.

When, however, it is desired to take into account all the experiments, the method of
least squares is the most convenient in the following way. We proceed from the approximate
values of the unknowns x and y, which emerge from the combination of the first and fourth
experiments, and, designating the still-to-be- added corrections by ξ  and η , we say:

ξ  . x += 1364688 
η  . y += 8521184 .

From this are derived as calculated values the times t', t'', t''', t'''' by familiar methods:

,00035838.008980.082958.15''''

00032067.010036.069121.17'''

00027291.011793.078731.20''

00023008.013988.065717.24'

ηξ
ηξ

ηξ
ηξ

+−=
+−=
+−=
+−=

t

t

t

t

whose comparison with the observed values, treated according to the method of least squares,
yields the results:

.47.21172 ;10416.88

38.12 ;03230.0

==
−=−=

yx

ηξ

From this finally results

TM = 179,575,250, K + C = 4372,419,000,

 and then with addition of the first experiment:

K = 4,228,732,400, C = 143,686,600.

I next present a comparison of the times calculated from the corrected values of the
magnitudes x, y, with the observed values.

Experiment Claculated time Observed time Difference
I 24.65884‘‘ 24.65717‘‘ +0.00167‘‘



II 20.78774 20.79228 -0.00454
III 17.69046 17.68610 +0.00436
IV 15.82805 15.82958 -0.00153

In Goettingen, we set the length of the simple second pendulum = 994,126 mm, hence
the weight, measured by that unit of the accelerating forces, which underlies the preceding
calculations, = 9,811.63; thus if we prefer to take gravity itself as the unit, then TM =
18,302.29: this number expresses the number of milligrams, whose pressure under the
influence of gravity on a lever of the length of one millimeter is equivalent to the force with
which the terrestrial magnetism seeks to turn that needle around the vertical axis.

12.

After we have completed the determination of the product of the horizontal
components T of the terrestrial magnetic force into the magnetic moment M of the given
needle, we proceed to the second part of the experiment, namely, to the determination of the
quotient M/T. We will accomplish this by comparing the effect of this needle on another
needle with the effect of terrestrial magnetism on the very same needle; specifically, this will
be observed, as was already discussed in the introduction, either in a state of motion or in a
state of equilibrium; we have repeatedly investigated each of the two methods: but for several
reasons the latter is preferable by far to the former, and thus we will confine the investigation
here to that one, while the first can be dealt with in a similar way without difficulty.

13.

The conditions of equilibrium in a movable body, on which arbitrary forces act, can
easily be brought together in one single formula by means of the principle of virtual
displacements: namely, the sum of the products of any one force multiplied into the projection
of an infinitely small displacement of its working point on the direction of force, must be so
constituted that it can attain a positive value for no virtual movement, i.e., a movement
complying with the conditions, so that, if the virtual movements are possible collectively in
opposite directions, that aggregate, which we wish to designate Ωd , is = 0 for any virtual
movement.

The movable body we consider here is the magnetic needle, which is connected at a
point G to a revolving thread, fastened at the top. This thread merely prevents the distance of
point G from the fixed end of the thread from becoming greater than the length of the thread,
so that here, too, as in the case of a completely free body, the position of the body in space
depends on six variables and further the equilibrium itself on six conditions. Since, however,
the solution of the problem is only to serve to determine the fraction M/T, it suffices to
consider that virtual movement, which occurs in the rotation around the vertical axis
intersecting G; and it is evident that such an axis can be considered as fixed, and only the
angle between the vertical planes, in which the magnetic axis is located, and the magnetic
meridian plane, as variable. We will take this angle from the north side of the meridian toward
the east and designate it u.

14.

We will conceive of the volume of the movable magnetic needle as divided into
infinitely small elements, letting the coordinates of an arbitrary element be x, y, z, while e is
the element of free magnetism contained in it. We place the origin of the coordinates in the



arbitrary point h inside the needle on the vertical line going through G; the axis of the
coordinates x and y is to be horizontal, the former in the magnetic meridian directed toward
the north, the latter toward the east; the coordinate z we place as above. Then the effect of the
terrestrial magnetism on the element e yields the element Tedx  of Ωd .

In a similar way, the volume of the second fixed needle is divided into infinitely small
elements, and any element may conform to the coordinates X, Y, Z, and the amount E of free

magnetism; finally, r would be 222 )()()( zZyYxX −+−+−= . Under this condition, the

effect of element E on element e yields the contribution 
nr

eEdr
 to the sum Ωd , if the power

nr  of the distance r is assumed to be inversely proportional. If we denote by N the value of u
which corresponds to the un-twisted state of the thread, then the moment of the torsion of the
thread can be expressed as )( uN −Θ : this force can be conceived in such a way, as if the

tangential force 
D

uN )( −Θ=  acted on each end of a horizontal diameter of the thread placed

through G, where D denotes this diameter, and it is easily seen, that from this as element of
the sum is derived: duuN )( −Θ .

The weight of the particles of the needle clearly does not contribute to the sum Ωd ,
since only u is variable; therefore we have the equation:

−Θ++=Ω duuN
r

eEdr
Tedxd

n
)( ,

in which the summation in the first term relates to all elements e, in the second to all
combinations of the individual e with the individual E. Hence it is clear, that the condition of
stable equilibrium consists in

−Θ−
−

−=Ω −
2

1
)(

2

1

)1(
uN

rn

eE
Tex

n

 becoming a maximum.

15.

It suits our purpose, to always construct the experiments so that the magnetic axis of
each of the two needles is horizontal, and that both needles are approximately at the same
height; hence we wish to confine further calculations to these preconditions.

We will relate the coordinates of the points of the first needle to fixed axes in the
needle, which also still intersect point h; that is, the first axis would lie in the direction of the
magnetic axis, the second horizontal and to the right of the first, the third vertical and directed
upward; the coordinates of the element e in relation to these axis would be a, b, c. Likewise A,
B, C would be the coordinates of element E in relation to similarly fixed axes in the second
needle, which intersect this needle at a point H: we select this point close to the center of the
needle and at the same height as point h.

The position of point H would of course be most conveniently determined by the
distance from point h and the direction of the straight line associated with it, if it is a matter of



only <one> experiment: since, however, for our purpose several experiments are always
necessary, which are related to different positions of point H, all of which certainly lie in the
same straight line, yet not necessarily in a line through point h, it is better to construct the
demonstration from the very beginning, in such a way that the system of such experiments
depends on one single unknown. Hence we wish to relate point H to an arbitrary point h' in
the same horizontal plane, which lies near h and whose coordinates may be 0 , , βα , and wish
to make the distance h'H = R and the angle of the lines h'H with the magnetic meridian ψ= .
If we now denote the angle of the magnetic axis of the second needle with the magnetic
meridian by U, then we will have:

.

cossinsin

sincoscos

cossin

sincos
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UBUARY
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ψα

Thus everything is in place for developing the sum Ω  and the fraction 
du

dΩ
, which has

to disappear for the equilibrium state.

16.

First, will umTbeuTaeuTTex cossincos =−= , if we denote by m  the

momentum of the free magnetism of the first needle ae , since be  is 0= : the element of

du

dΩ
, which derives from the first term of Ω , will be umT sin−= .

 If, for the sake of brevity, we say:

[ ] ,)()cos()sin()cos()sin(cossin

)sin()cos()sin()cos(sincos
22 cCubuaUBUAl

ubuUBUAk

−+−−−−−−−+−=

−−−−−+−++=

ψψψψψβψα

ψψαψψψβψα

 thus rr will be lkR ++= 2)( .

Since the bei verwerthbaren experiments R must be far larger than the dimensions of

each of the two needles, the magnitude 
1

1
−nr

 can be evolved into the quickly convergent
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 whose law, if it were worth the effort, could be easily specified. The individual terms of the

sum −1nr

eE
, which derives from inserting the values of the magnitudes k and l, will contain a

factor of the form:

;''' νµλνµλ CBAcbeEa

this is equal to the product of the factors νµλ cbea  and ''' νµλ CBEA , which respectively

depend on the magnetic state of the first and second needles. Taking this into consideration,
what we may establish confines itself to the equations:

,0 ,0 , ,0

,0 ,0 , ,0

====

====

ECEBMEAE

ecebmeae

 where we denote by M the moment of the free magnetism of the second needle. In the special
case, that the shape of the first needle (the moveable one) and the distribution of magnetism in
the longitudinal direction are symmetrical, so that two elements always correspond, for which
a and e have equivalent opposite values b and c, then, as soon as the midpoint coincides with
point h , νµλ cbea  will always = 0 for a direct value of the number νµλ ++ , and

similarly for the second needle, if the shape and the distribution of magnetism is symmetrical

in relation to point H. Hence, in general, in the sum − )1(nr

eE
 the coefficients of the powers

)1( −− nR and nR−  disappear; in the special case, where each of the two needles is symmetrically
shaped and symmetrically magnetized, while at the same time the midpoint of the first, h and
h', coincide, and likewise the midpoint of the second and H coincide, then the coefficients of
the powers )6()1()2(  , , +−+−+− nnn RRR  and so forth will also disappear; every time those
conditions occur very approximately, they must at least be very small. The major term, which

is derived from the elaboration of the second element of Ω , namely from −−
−

)1()1( nrn

eE

will be:
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ψψψψ

From this it follows, that the element of 
du

dΩ
, which corresponds to the influence of

the second needle, can be expressed by the following series:

...,''' )3()2()1( +++ +−+−+− nnn RfRffR

in which the coefficients contain rational functions of the cosine and sine of the angles
Uu  , ,ψ  and the magnitudes are βα  , , and beyond that, contain, constant magnitudes, which

depend on the magnetic state of the needle; specifically, they will be:

( ).)cos()sin()sin()cos( uUuUnmMf −−+−−= ψψψψ



The complete elaboration of the following coefficients f', f'' and so forth is not
necessary for our purpose; it suffices to remark that

1) in the case of complete symmetry, the just-indicated coefficients f', f'' and so forth
disappear;

2) if the remaining magnitudes remain unchanged and is increased by two right angles
(or, the same thing, if the distance R is taken from the same, backwards-extended straight line
on the other side of point h'), the coefficients f, f'', f'''' and so forth preserve their values, while
f', f''', f''''' and so forth take on opposite values, or that the series turns into

...;''' )3()2()1( −+− +−+−+− nnn RfRffR

this is easily inferred from the fact that by means of this change in ψ , k becomes -k, but l is
not transformed.

17.

The condition that the movable needle not be revolved around the vertical axis by the
combination of forces is thus summed up in the following equation:

).(...'''sin0 )3()2()1( NuRfRffRumT nnn −Θ−++++−= +−+−+−

Since it can easily be effected, that the value of N, if not = 0, is at least very small, and
also u, for the experiment at hand, remains within narrow limits, then, without having to fear

significant error, for the term )( Nu −Θ  one can use )sin( Nu −Θ , all the more so, as 
mT

Θ
 is

a far smaller fraction. Let u° be the value of u, which corresponds to the equilibrium of the
first needle in the absence of the second, or let

;0)sin(sin =−ϒΘ+ϒ NuumT

from this easily follows

( ) ),sin()cos(cos)sin(sin ϒ−−ϒΘ+ϒ=−Θ+ uuNuumTNuumT

where, in place of the first factor, Θ+mT  can be adopted without reservation. Thus our
equation becomes:

. ...''')sin()( )3()2()1( +++=ϒ−Θ+ +−+−+− nnn RfRffRuumT

If we keep the term alone, the solution is within reach, namely, we have
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where in the denominator of the element, which contains the factor )1( +− nR , we can suppress
or affirm, with just the same correctness:



( ) .)cos()sin()sin()cos()( )1()1( +−+− =ϒ−−+ϒ−−
Θ+

=ϒ− nn FRRuUuUn
mT

mM
uutg ψψψψ

However, when we want to take into account the further terms, then it is clear, that )( ϒ− uutg
can be evolved into a series of the following form:

...,''')( )3()2()1( +++=ϒ− +−+−+− nnn RFRFFRuutg

in which, as a slight reflection shows, the coefficients F, F', F''' and so forth up to the
coefficients of the power )12( +− nR  respectively result inclusively from

forth, so and ,
''

 ,
'

 ,
Θ+Θ+Θ+ mT

f

mT

f

mT

f

by means of changing u into u° from the following term on, however, new elements will
enter, which for our purpose we need not pursue more precisely. For the rest, it is manifest
that u – u° can be evolved into a series of a similar form, which, up to the power )23( +− nR ,
coincide with the series for )( ϒ− uutg .

18.***

It is now clear that, if the second needle is set up at different points on the same
straight line, so that ψ  and U retain their value, while R alone is changed, and the deviation of
the moveable needle from the equilibrium position, whereby the second needle is displaced,
namely, the angle u – u° is observed, [and] from this it follows that the values of the
coefficients F, F', F'' and so forth, as many as are still significant, can be ascertained through
elimination; by this means we will obtain the equation:

)cos()sin()sin()cos(
1

ϒ−−+ϒ−−
√
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 Θ+=
uUuUn

F

TmT

M

ψψψψ

in which the value of the magnitude 
Tm

Θ
 can be found by the method we demonstrated in

section 8. For a more convenient demonstration, however, it will be useful to observe the
following:

I. In place of the comparison of u with u° it is preferable to compare the two opposite
deviations with each other, by reversing the position of the second needle, namely, so that R
and ψ  remain unchanged and the angle U is increased by two right angles. If the values of u
corresponding to these positions are denoted by u' and u'', then in the case of complete
symmetry u'' precisely = -u', if u° were = 0. But it is superfluous, to anxiously keep to these
conditions, since it is clear that u' and u'' are determined by similar series, in which the first

terms have <precisely> opposite values, and further also )'''(
2

1
uu − , likewise by a similar

series, in which the coefficient of the first term is <precisely> = F.

                                                            
*** S. Anm. 5, Ende.



II. It will be still better, always to combine every four experiments, also after the angle
ψ is changed by two right angles or the distance R has been taken on the other side. If the two

latter experiments correspond to the values u''' and u'''', then the difference )'''''''(
2

1
uu −  will

be expressed by a similar series, whose first term likewise will have a coefficient = F. It
should be noted (which follows readily from the foregoing) that, if n were an odd number, the
coefficients F, F'', F'''', and so forth would be precisely the same to infinity in any series for u'
– u° and u''' – u° , and the coefficients F', F''', F''''' and so forth would be precisely opposite to
infinity, and the same for u'' – u° and u'''' – u° , so that in the series for u' - u'' + u''' - u '''' the
alternate term would disappear. But in the case of actual reality, where n = 2, such a
relationship between the series for u' – u° and u''' – u° is, generally speaking, not strictly
present, since, for the power 6−R , coefficients which are not precisely opposite already arise;
however, it can be shown, that for this term as well a complete cancellation occurs in the

combination u' - u'' + u''' - u'''', so that )''''''''''(
4

1
uuuutg −+−  has the form:

...''' 753 +++ −−− RLRLLR

or, more generally, if we leave the value of n undetermined for the time being, the following
form:

...,''' )5()3()1( +++ +−+−+− nnn RLRLLR

 where L = F.

III. It will be useful to choose the angles ψ  and U in such a way that small errors
occurring in the process of measurement itself, do not significantly change the value of F. For
this purpose, the value of U for a given value of ψ  must be posited in such a way, that F will
be a maximum; namely, it must be

).()( ϒ−=− untgUctg ψψ

Then

.))cos()sin(( 22 ϒ−+ϒ−
Θ+

±= uunn
mT

mM
F ψψ

The angle ψ  is to be chosen, however, such that this value of F becomes either a
maximum or a minimum: the former occurs for ϒ=ϒ− 90uψ  or 270°, in which case

Θ+
±=

mT

nmM
F , the latter occurs for 0=ϒ− uψ  or 180°, where 

Θ+
±=

mT

mM
F .

19.

Hence two methods are available which are best suited to carrying out our task. Their
elements are shown in the following schema.

First Method.



The midpoint and the axis of the second needle lie in the straight line perpendicular to
the magnetic meridian.***)

Deflection Position of the needle Midpoint toward North pole toward
u = u‘ ψ = 90° U = 90° East East
u = u‘‘ ψ  = 90 U = 270 East West
u = u‘‘‘ ψ  = 270 U = 90 West East
u = u‘‘‘‘ ψ  = 270 U = 270 West West

Second Method.

The midpoint of the second needle lies in the magnetic meridian.

Deflection Position of the needle Midpoint toward North pole toward
u = u‘ ψ = 0° U = 270° North West
u = u‘‘ ψ  = 0 U = 270 North East
u = u‘‘‘ ψ  = 180 U = 90 South West
u = u‘‘‘‘ ψ  = 180 U = 90 South East

If we set vuuuu =−+− )''''''''''(
4

1
 and +++= +−+−+− )5()3()1( ''' nnn RLRLLRtgv  and so

forth, then for the first method

Θ+
=

mT

nmM
L ,

 for the second

Θ+
=

mT

mM
L .

20.

From the theory of elimination it will easily be concluded, that the calculation is more
imprecise because of the unavoidable errors in observation, the more coefficients must be
determined by elimination. Therefore the method set forth in section 18, II is greatly to be
prized, because it suppresses the coefficients )2( +− nR , )4( +− nR . In the case of complete
symmetry, these coefficients would of course fall out by themselves, but it would be too
uncertain to rely upon that case occurring. Moreover, a small deviation from the symmetry
would have a far lesser influence in the first method than in the second, and if at least care is
taken that point h', from which the distances will be measured, lies with sufficient precision in
the magnetic meridian going through point h, there will scarcely be a significant difference
between u' - u'' and u''' - u'''. However, things stand otherwise in the second method,
                                                            
***) More precisely, to the vertical plane, which corresponds to the value u = u° , i.e. in which
the magnetic axis finds itself in equilibrium, when the second needle is not there. For the rest,
in practice, the difference can be safely ignored, both because of the smallness and directly
because of the relationships we discussed in section III above.



especially if the apparatus requires an eccentric suspension. This method, whenever space
does not permit observations from both sides, will always attain far less precision. Moreover,
the first method is also especially preferable, because it yields a value of L twice as large as
the second, in the case of reality, n = 2. If, by the way, one wants to discard, as much as
possible in the second method, the term dependent on )2( +− nR  in the case of the eccentric
suspension, point h' should be chosen, so that the midpoint of the needle (for u – u°) lies in
the center between h and h': the computation which showed this, however, I must omit for the
sake of brevity.

21.

In the foregoing computations, we have left the exponent n undetermined: during the
days from June 24 to June 28, 1832 we carried out two series of experiments, under extension
to the greatest distances as the room permitted, through which it is shown most intelligibly,
which values Nature demands. In the first series, the second needle (according to the method
in Section 19) was placed in a straight line perpendicular to the magnetic meridian, in the
second series, the midpoint of the needle was itself placed in the meridian. Here is an
overview of these experiments, in which the distances R are expressed in fractions of meters

and the values of the angle )''''''''''(
4

1
uuuu −+−  are denoted for the first series by v, for the

second by v'.

R v v‘
1.1m 1° 57‘ 24.8‘‘
1.2 1 29 40.5
1.3 2° 13‘ 51.2‘‘ 1 10 19.3
1.4 1 47 28.6 0 55 58.9
1.5 1 27 19.1 0 45 14.3
1.6 1 12 7.6 0 37 12.2
1.7 1 0 9.9 0 30 57.9
1.8 0 50 52.5 0 25 59.5
1.9 0 43 21.8 0 22 9.2
2.0 0 37 16.2 0 19 1.6
2.1 0 32 4.6 0 16 24.7
2.5 0 18 51.9 0 9 36.1
3.0 0 11 0.7 0 5 33.7
3.5 0 6 56.9 0 3 28.9
4.0 0 4 35.9 0 2 22.2

Even a superficial glance shows that for larger values, the numbers in the second
column nearly twice as big as the numbers of the third, and also the numbers in each row
approximate the inverse of the cube of the distances, so that no doubt can remain as to the
accuracy of the value n = 2. In order to confirm this law still further by means of specific
experiments, we have dealt with all the numbers according to the method of least squares,
from which the following values of the coefficients emerged:

.002449.0043435.0'

002185.0086870.0
53

53

−−

−−

+=
−=

RRtgv

RRtgv



The following overview shows the comparison of the values computed by this formula
with the observed values.

Computed values.
R v Difference v‘ Difference

1.1m 1° 57‘ 22.0‘‘ +2.8‘‘
1.2 1 29 46.5 -6.0
1.3 2° 13‘ 50.4‘‘ +0.8‘‘ 1 10 13.3 +6.0
1.4 1 47 24.1 +4.5 0 55 58.7 +0.2
1.5 1 27 28.7 -9.6 0 45 20.9 -6.6
1.6 1 12 10.9 -3.3 0 37 15.4 -3.2
1.7 1 0 14.9 -5.0 0 30 59.1 -1.2
1.8 0 50 48.3 +4.2 0 26 2.9 -3.4
1.9 0 43 14.0 +7.8 0 22 6.6 +2.6
2.0 0 37 5.6 +10.6 0 18 55.7 +5.9
2.1 0 32 3.7 +0.9 0 16 19.8 +4.9
2.5 0 19 2.1 -10.2 0 9 38.6 -2.5
3.0 0 11 1.8 -1.1 0 5 33.9 -0.2
3.5 0 6 57.1 -0.2 0 3 29.8 -1.0
4.0 0 4 39.6 -3.7 0 2 20.5 +1.7

22.

The foregoing experiments were mainly undertaken with the intention of securing the
law of magnetic action against any doubt, and further, of examining how many terms of the
series are to be taken into account, and what degree of precision the experiments permit. They
have shown that, if we do not make the distances smaller than four times the length of the
needle, two terms suffice****. Furthermore, the differences which the computation has yielded,
may no way be simply held to be observational errors: several precautionary measures, from
whose application a greater conformity may be expected, were at that time not yet in
readiness. These include corrections for the hourly variability of the intensity of the terrestrial
magnetism, of which heed must be taken in using another needle for comparison, according to
the method we have spoken of in section 10. However, so that one gets to know the value of
the terrestrial magnetism, insofar as it can be inferred from these experiments, we append a
synopsis of the remaining experiments in this group.

The value of the fraction 
Tm

Θ
 for the first needle and the thread on which it hangs, is

ascertained by the method described in section 8 to be 
96.251

1= .

From this comes the result:

.0436074.0=
T

M

                                                            
**** The length of the needles used in these experiments was approximately 0.3 m; if we had
tried to include the term 7−R  in the computation, the precision would have been decreased
rather than increased.



This number is based on the meter as the unit of length. If we prefer to take the
millimeter, this number should be multiplied by the cube of 1,000, so that

.43607400=
T

M

For the second needle, experiments were performed on June 28 resembling those we
have described for another needle in section 11; millimeters, milligrams, and the seconds of
the mean sun time are taken as units, resulting in:

TM = 135,457,900

 and from this, by eliminating the magnitude M,
T = 1.7625.

23.

If experiments are performed to determine the absolute value T of the terrestrial
magnetism, it is of great significance to take care that the entirety of these experiments be
completed within not too long a time span, so that no significant change in the magnetic state
of the needles used in the experiments is to be feared. It is recommended, that in observing the
deviations of the movable needle, the first procedure in section 20 alone be applied, after only
two different distances are appropriately chosen, assuming that two terms of the series suffice.
We choose as an example one of several applications of this method, namely, the one to
which the most exacting care was devoted, by measuring the distances with microscopic
precision.

The experiments were performed on September 18, 1832 with two apparatus, which
we wish to denote by A and B, and specifically with three needles, denoted 1, 2, 3. Needles 1
and 2 are the same ones referred to as first and second in section 11. The experiments are
divided into two parts.

First the simultaneous oscillations of needle 1 in apparatus A and needle 2 in apparatus
B were observed. As the duration of an oscillation, reduced to infinitely small amplitudes,
resulted

for needle 1....... 15.22450"
for needle 2....... 17.29995",

 the former for 304 oscillations, the latter for 264 oscillations.

Next, needle 3 was suspended in apparatus A, while needle 1 was placed in the straight
line perpendicular to the magnetic meridian, eastward and also west and on both sides in a
double manner, and the deviation of needle 3 for the single position of needle 1 was observed.
This experiment, which was repeated for two different distances R, gave the following values
of the angle v, whose significance is the same as in section 19 and section 21:

R = 1.2m v = 3° 42‘ 19.4‘‘
R‘ = 1.6m v‘ = 1° 34‘ 19.3‘‘.



During this experiment, too, the oscillations of needle 2 in apparatus B were observed.
The mean time corresponded to the value, computed from 414 oscillations, of the oscillation
duration for infinitely small curves = 17.29484.

The time periods were observed on a clock, whose daily retardation was 14.24". If M
and m denote the momentum of the free magnetism for needle 1 and 3, and Θ  the torsion
constant of the threat in apparatus A, while it held needle 1 or 3 (whose weight is almost
identical), then we have:

,
4.597

1=Θ
TM

 as in section 11,

;
6.721

1=Θ
TM

 because needle 3 was more strongly magnetized than needle 1.

The inertial moment of needle 1 was already known from earlier experiments (see
section 11), which had yielded: K = 4228732400, in which millimeter and milligrams were
taken as the units.

The change in the thermometer in both rooms where the apparatuses were installed,
was so slight during the entire period of the experiments, that it is superfluous to consider it.

We now wish to proceed to the computation of these experiments, in order to infer
from it the intensity T of the terrestrial magnetism. The variation in the oscillations of needle
2 indicate a slight change in this intensity: hence, in order for us to speak of a definite value,
we will reduce the observed duration of the oscillations of the first needle to the mean state of
the terrestrial magnetism during the second part of the observations. This duration requires
still another reduction on account of the retardation of the clock, and a third on account of the
torsion of the thread. In this way the reduced duration of one oscillation produced:

.''23500.15
4.597
4.598

76.86385
86400

29995.17
29484.17

22450.15 t==??↔=

From this follows the value of the product

.179770600==
tt

K
TM

ππ

The slight difference between this value and the one in section 11 found on September 11, is
to be ascribed to the change in the terrestrial magnetism and also to the change in the
magnetic state of the needle.

From the observed deviations we derive:

,113056200
''
'' 55

=
−
−=
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 if we take the millimeter as the unit, and thence

.566064371
2

1 =√
↵

 Θ+=
Tm

F
T

M

Finally, the comparison of this number with the value of TM yields

782088.1=T

as value of the intensity of the horizontal terrestrial magnetic force on September 18 at 5
o'clock.

24.

The foregoing experiments were made at the observatory, where the location for the
apparatus was sought out in such a way that iron was kept away from the vicinity as much as
possible. Nevertheless, it cannot be doubted, that the iron masses, which were abundantly
distributed in the walls, windows, and doors of the building, indeed, even the iron components
of the large astronomical instruments, in which magnetism is induced by the terrestrial
magnetic force, exert an in no way insignificant effect on the suspended needles. The forces
arising from this alter not only the direction, but also the intensity of the terrestrial magnetism
by a small amount, and our experiments do not provide the pure value of the intensity of the
terrestrial magnetism, but the value modified for the locus of apparatus A. As long as the iron
masses remain in place and the elements of the terrestrial magnetism itself (namely, the
intensity and direction) do not change very considerably, this modification must remain
significantly constant, but what magnitude is reached, is indeed unknown up to now;
nevertheless, I am scarcely inclined to believe, that this exceeds one or two hundredths of the
total value. However, it should not be difficult to determine the magnitudes, at least
approximately, by means of experiments, namely, through observation of the simultaneous
oscillations of two needles, of which the one would be at the usual locus of observation, the
other meanwhile at a rather great distance from the building and from other disturbing masses
of iron, and which then would have to exchange places. But up to now it was not possible to
carry out this experiment. The safest remedy, however, must be to construct a special building
devoted to magnetic observations, which as a result of royal graciousness will soon be
erected, and from whose construction iron is to be altogether excluded.

25.

In addition to the experiments described, we have carried out many other similar
experiments, even if we took less care with the earlier ones. It will, nevertheless, be of interest
here to assemble the results in a table, in which, however, those results are uebergangen,
which before the installation of the more refined apparatus, were obtained by means of other,
cruder adjuncts to needles of the most disparate dimensions, although all of them have
provided at least an approximation of reality. Through repeated experiments, the following
successive values of T resulted:

Number Time, 1832 T
I May 21 1.7820
II May 24 1.7694
III June 4 1.7713



IV June 24-28 1.7625
V July 23, 24 1.7826
VI July 25, 26 1.7845
VII September 9 1.7764
VIII September 18 1.7821
IX September 27 1.7965
X October 15 1.7860

Experiments V-IX were performed together in the same place, but I-IV in different
places; experiment X is actually a composite, since the deviations were observed at the usual
place, but the oscillations at another place. In experiments VII and VIII, an almost equal
precision was applied; in experiments IV, V, VI and X, however, a somewhat lesser precision,
and in experiments I-III a far lesser. In experiments I-VIII, in fact, different needles were
used, although they had the same weight and the same length (the weight was between 400 g
and 440 g); experiment X, in contrast, used a needle, whose weight was 1,062 g and whose
length was 485 mm. Experiment IX was only undertaken in order to see what degree of
precision can be attained by means of a very small needle. The weight of the needle employed
was only 58 g, otherwise, however, the precision was no less than in experiments VII and
VIII. There exists no doubt, that the refinement of the observations will be significantly
increased, when still heavier needles are used, e.g. needles weighing up to 2,000 or 3,000 g.

26.

If the intensity T of the terrestrial magnetic force is expressed by a number k, then this
is based on a certain unit V, namely, a force that is the same as the other force, whose
connection with the other directly given units is certainly contained in the above, but in a
somewhat complicated way: therefore, it will be worth the trouble, to demonstrate this
connection here de novo, in order to show with elementary clarity, what change the number k
undergoes, if we start with other units instead of the original units.

To establish unit V, one must proceed from the unit of free magnetism M****) and the
unit of distance R, and we make V equal to the force exerted by M at distance R.

As unit M, we have assumed that quantity of magnetic flux, which elicits, in an
equally large quantity M at distance R, a motive force (or, if one prefers, a pressure), which is
equivalent to that W, which serves as the unit, i.e., equivalent to the force, which the
acceleration A taken as the unit exerts on the mass P taken as the unit.

To establish unit A, two paths are available: namely, A can either be derived from a
similar immediately given force, e.g. from the gravity at the locus of observation, or from the
effect of A, which manifests itself in the movement of bodies. The second method, which we
followed in our calculations, requires two new units, namely, the unit of time S and the unit of
velocity C, so that that accelerating force is taken as the unit which, if it acts in time S, elicits
the velocity C; finally, for the latter, that velocity is assumed, which corresponds to uniform
movement through space R in time S.

Thus it is clear, that the unit V depends on three units, either R, P, A or R, P, S.

                                                            
****) It will scarcely be necessary to recall, that the earlier denotation given to the letters stops
here.



If we now assume that in place of units V, R, M, W, A, P, C, S, others are taken: V', R',
M', W', A', P', C', S', which are connected with each other like the previous ones, and that the
terrestrial magnetism will be expressed by the use of the metric V' , then it is to be
investigated, how this [k'] relates to k.

If we say:

V = vV'
R = rR'

M = mM'
W = wW'
A = aA'
P = pP'
C = cC'
S = sS',

 then v, r, m, w, a, p, c, s will be absolute numbers, and
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From the combination of these equations we find:

I.
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kk ='

II.
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As long as we keep to the path we have followed in our observations, we are obliged
to use the first formula: if, for example, we assume the meter and the gram as units instead of

millimeters and milligrams, then r will be 
1000

1= , 
1000

1=p , thus k = k'; if the Paris line and

the Berlin pound [are the units], then we will have: 
255829.2

1=r , 
4.467711

1=p ,

consequently

k‘ = 0.002196161 k,

and thus, e.g., experiment VIII gives the value T = 0.0039131.



If one prefers to follow another path, and assumes gravity as the unit of the

accelerating force, then, for the Goettingen observatory, a will 
63.9811

1= ; then, if we keep

the millimeter and milligram, the numbers k are to be multiplied by 0.01009554 and the
alteration of the former unit is to be handled according to formula II.

27.

The intensity of the horizontal terrestrial magnetic force T is to be multiplied by the
secant of the inclination, in order to yield the total intensity. The fact that the inclination is
variable in Goettingen and has undergone a diminution in the recent period, has been shown
by the observations of Humboldt, who in the month of December 1805 found the value of 69°
29', but in the month of September 1826 found 68° 22' 26". Likewise I found on June 23,
1832, with the help of the same inclinatorium which der s. Mayer once used, 68° 22' 52",
which seems to signify a retardation in the decline; yet I am inclined to put less trust in this
observation, not only because of the imperfection of the instrument, but also because of the
circumstance, that the observation performed in the observatory was not adequately secured
from disturbance by iron masses. However, these factors will also gain greater precision in
future.

28.

In this treatise, we have followed the generally accepted manner of explaining
magnetic phenomena, not only because it is completely adequate, but also because it
progresses in far simpler computations than the other view, which ascribes to magnetism,
galvano-electric orbits around the particles of the magnetic body; it was our intention, neither
to confirm nor to refute this view, which, to be sure, recommends itself in several respects;
this would have been inopportune, since the law of mutual effect among the elements of such
orbits does not yet seem to be sufficiently investigated. Whichever view is accepted, in the
future as well, for magnetic and electromagnetic phenomena: the first theory [of orbits] must
always lead to the same results as the usual theory, and what is developed on the basis of the
usual theory in the foregoing treatise, will be in a position to be changed merely in form, but
not in essentials.

 END OF DRAFT


